

Programme / Class: Bachelor of Science	Year: Third	Semester: Fifth	
Subject: Chemistry			
Course Code: B020501T	Course Title:	Organic Synthesis A	
Course outcomes:			Bloom Taxonomy
• CO1. Hydrocarbons are the principal	l constituents of	petroleum and natural gas. They serve as	K1-K6
fuels and lubricants as well as raw	materials for th	ne production of plastics, fibers, rubbers,	
solvents and industrial chemicals.	This course wil	ll provide a broad foundation in for the	
synthesis of hydrocarbons. Hydrox	xy and carbony	d compounds are industrially important	
compounds. The industries of plastic	cs, fibers, petro	leum and rubbers will specially recognize	
this course. Students will gain an und	lerstanding of w	hich are used as solvents and raw material	
for synthesis of drug and other pharm	naceutically imp	portant compounds.	
CO2. Synthesis and chemical proper	ties of aliphatic	and aromatic hydrocarbons.	K2, K4
• CO3. Synthesis and chemical proper carboxylic acids and esters.	rties of alcohols	s, halides carbonyl compounds,	K2, K4
• CO4. How to design and synthesize a	aliphatic and arc	omatic hydrocarbons.	K3, K5
• CO5. How to convert aliphatic and	d aromatic hydr	rocarbons to other industrially	
important compounds.			
CO6. Functional group interconversion	on.		K2, K4
Credits: 4	С	Core :Compulsory	
Max. Marks: 25+75	N	fin. Passing Marks: as per rules	
Total No. of Lectures-Tutorials-Practical (in I	nours per week):	L-T-P: 4-0-0	
		Tota Lect	l No. of ures/
Unit	Topics		rs (60)
Chemistry of Alkanes and Cy	vcloalkanes:		

Ι	Alkanes: Classification of carbon atom in alkanes, General methods of preparation,	8
	physical and chemical properties of alkanes: Wurtz Reaction, Wurtz-Fittig	
	Reactions, Free radical substitutions: Halogenation -relative reactivity and	
	selectivity.	
	Cycloalkanes: Nomenclature, methods of formation, chemical reactions, Baeyer's	
	strain theory and its limitations. Chair, Boat and Twist boat forms of cyclohexane	
	with energy diagrams ring strain in small rings, theory of strain less rings. The case	
	of cyclopropane ring, banana bonds.	
	Chemistry of Alkenes:	
П	Methods of formation of alkenes, Addition to C=C: mechanism (with evidence	12
	wherever applicable), reactivity, regioselectivity (Markownikoff's and anti-	
	Markownikoff's additions) and stereoselectivity; reactions: hydrogenation,	
	halogenation, hydrohalogenation, hydration, oxymercuration demercuration,	
	hydroboration-oxidation, epoxidation, syn and anti-hydroxylation, ozonolysis,	
	addition of singlet and triplet carbenes; Simmons-Smith cyclopropanation reaction;	
	electrophilic addition to diene (conjugated dienes and allene); radical addition: HBr	
	addition; mechanism of allylic and benzylic bromination in competition with	
	brominations across C=C; use of NBS; interconversion of <i>E</i> - and <i>Z</i> alkanes.	
	Chemistry of Alkynes:	
ш	Methods of formation of alkynes, Addition to $C=C$, mechanism, reactivity,	6
	regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations,	
	hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-	
	oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal	
	alkynes by exploring its acidity; inter conversion of terminal and non-terminal	
	alkynes.	
	Aromaticity and Chemistry of Arenes:	
IV	Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity:	10
	Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions.	

	Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their Mechanism. Directing effects of the groups. Birch reduction, Methods of formation and chemical reactions of alkylbenzenes, alkynylbenzenes and biphenyl, naphthalene and anthracene.	
V	Chemistry of Alcohols Classification and nomenclature, Monohydric alcohols – nomenclature, methods of formation by reduction of Aldehydes, Ketones, Carboxylic acids and Esters, Hydrogen bonding, Acidic nature, Reactions of alcohols. Dihydric alcohols nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc) ₄ and HIO ₄] and pinacol-pinacolone rearrangement. Trihydric alcohols - nomenclature, methods of formation, chemical reactions of glycerol.	
VI	Chemistry of Phenols: Nomenclature, structure and bonding, preparation of phenols, physical properties and acidic character, Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols – electrophilic aromatic substitution, acylation and carboxylation. Mechanisms of Fries rearrangement, Claisen rearrangement, Gatterman syntheis, Hauben Hoesch reaction, Lederer-Manasse reaction and Reimer-Tiemann reaction.	

	Chemistry of Ethers and Epoxides:				
VII	Nomenclature of ethers and methods of their formation, physical properties,	05			
	Chemical reactions - cleavage and autoxidation, Ziesel's method. Synthesis of				
	epoxides, Acid and base-catalyzed ring opening of epoxides, orientation of epoxide				
	ring opening, reactions of Grignard and organolithium reagents with epoxides.				
	Chemistry of Organic Halides:				
	Nomenclature and classes of alkyl halides, methods of formation, chemical reactions,				
VIII	Mechanisms of nucleophilic substitution reactions of alkyl halides, SN_2 and SN_1	05			
	reactions with energy profile diagrams; Polyhalogen compounds: Chloroform,				
	carbon tetrachloride; Methods of formation of aryl halides, nuclear and side chain				
	reactions; The addition-elimination and the elimination-addition mechanisms of				
	nucleophilic aromatic substitution reactions; Relative reactivities of alkyl halides vs				
	allyl, vinyl and aryl halides, Synthesis and uses of DDT and BHC.				
Suggested Readin	gs:				
1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).					
2. Sykes, P. A	2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.				
3. Carey, F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.					
4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.					
5. Clayden, J	5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2 nd edition, Oxford University Press, 2012.				
6. Graham So	6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.				
7. Smith, J. C	7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.				
8. March, J. A	8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley. \				
9. Bariyar an	9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Edition, 2019				
10. Mukherji	10. Mukherji, Singh, Kapoor, Organic Chemistry, volume 1,2 and 3, 2014, New Age International.				
11. Geeta Ra	ni, General Organic Chemistry, Manakin press				
12. Arun Bah	ll & B S Bahl, Advanced Organic Chemistry, S. Chand Publishing				
13. TN SRIV	13. TN SRIVASTVA AND PC KAMPOJ, SYSTEMATIC NALYTICAL CHEMISTRY, SHOBAN LAL NAGIN				

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Programme / Class:	Bachelor of Science	Year: Third	Semester: Fifth	
Subject: Chemistry				
Course Code: B020	502T	Course Title: Re	arrangements and Chemis	stry of Group Elements
Course outcomes:			Bloon	n Taxonomy
·	aper provides detailed know bounds and functional group	c i	f various class of	K2, K4
provides job	c synthesis is the most impo s in production & QC de MCG <i>etc</i> . industries.	e	-	K3, K4
	ates and gives an analytic nportant compounds.	cal aptitude for syr	thesizing various	K2, K4
_	per also provides a detailed ngs, their occurrence in natu	-	ements present in	K4, K5
well as their	position in periodic table, the extraction. This paper also glements and their characteris	ives detailed understa	• •	K2, K4
Credits: 4		Cor	e: Compulsory	
Max. Marks: 25+75		Min	. Passing Marks: as per	rule
Total No. of Lectures	-Tutorials-Practical (in hours	s per week): L-T-P:	4-0-0	
Unit		Topics		Total No. of Lectures/ Hours (60)

	Rearrangements:
I	A detailed study of the following rearrangements: Pinacol-pinacolone, Demjanov,
	BenzilBensilic acid, Favorskii, Hofman, Curtius, Schmidt, Baeyer-Villiger and Fries
	rearrangement.
	Catalysis:
п	General principles and properties of catalysts, homogenous catalysis (catalytic steps8
	and examples) and heterogenous catalysis (catalytic steps and examples) and their
	industrial applications, Deactivation or regeneration of catalysts. Phase transfer
	catalysts, application of zeolites as catalysts. Enzyme catalysis; Michaelis-Menten
	equation, turn-over number.
	Chemistry of Main Group Elements:
ш	s-Block Elements: Comparative study, diagonal relationship, salient features of 10
	hydrides, solvation and complexation tendencies including their function in
	biosystems, an introduction to alkyls and aryls.
	p-Block Elements: Comparative study (including diagonal relationship) of groups
	13-17 elements, compounds like hydrides, oxides, oxyacids and halides of group 13-
	16, hydrides of boron-diborane and higher boranes, borazine, borohydrides,
	fullerenes, carbides, fluorocarbons, silicates (structural principle), tetrasulphur tetra
	nitride, basic properties of halogens, interhalogens and polyhalides.
	Chemistry of Noble Gasses: Chemical properties of the noble gases, chemistry of
	xenon, structure and bonding in xenone compounds.

ख्वाजा मुईनुद्दीन चिश्ती भाषा विश्वविद्यालय, लखनऊ, उत्तर प्रदेश (भारत) Khwaja Moinuddin Chishti Language University, Lucknow, U.P. (India) U.P. STATE GOVERNMENT UNIVERSITY,

(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Chemistry of Elements of First Transition Series : Characteristic properties of d- block elements. Binary compounds (hydrides, carbides and oxides) of the elements of the first transition series and complexes with respect to relative stability of their oxidation states, coordination number and geometry.	
of the first transition series and complexes with respect to relative stability of their	
oxidation states, coordination number and geometry.	
Chemistry of Elements of Second and Third Transition Series: General	
characteristics, comparative treatment of Zr/Hf, Nb/Ta, Mo/W in respect of ionic	
radii, oxidation states, magnetic behavior, spectral properties and stereochemistry.	
Chemistry of Lanthanides: Electronic structure, oxidation states and ionic radii	
and lanthanide contraction, complex formation, occurrence and isolation, ceric	
ammonium sulphate and its analytical uses.	
	4
Chemistry of Actinides: Electronic configuration, oxidation states and magnetic	4
properties, chemistry of separation of Np, Pu and Am from U.	T
Metal Carbonyls: Metal carbonyls, 18-electron rule, preparation, structure and	
nature of bonding in the mononuclear and di-nuclear carbonyls.	6
Bioinorganic Chemistry: Essential and trace elements in biological processes,	
metalloporphyrins with special reference to heamoglobin and myoglobin.	6
Biological role of alkali and alkaline earth metal ions with special reference to Ca^{2+} .	0
Nitrogen fixation.	
-	 characteristics, comparative treatment of Zr/Hf, Nb/Ta, Mo/W in respect of ionic radii, oxidation states, magnetic behavior, spectral properties and stereochemistry. Chemistry of Lanthanides: Electronic structure, oxidation states and ionic radii and lanthanide contraction, complex formation, occurrence and isolation, ceric ammonium sulphate and its analytical uses. Chemistry of Actinides: Electronic configuration, oxidation states and magnetic properties, chemistry of separation of Np, Pu and Am from U. Metal Carbonyls: Metal carbonyls, 18-electron rule, preparation, structure and nature of bonding in the mononuclear and di-nuclear carbonyls. Bioinorganic Chemistry: Essential and trace elements in biological processes, metalloporphyrins with special reference to heamoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special reference to Ca²⁺.

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2 nd edition, Oxford University Press, 2012.
- 6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 7. Mukherji and Singh, Reaction Mechanism in Organic Chemistry, Laxmi Publications, 2016 39
- 8. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 9. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 10. Lee, J.D. Concise Inorganic Chemistry, Pearson Education 2010

11. Huheey, J.E., Keiter, E.A., Keiter, R. L., Medhi, O.K. Inorganic Chemistry, Principles of Structure and
Reactivity, Pearson Education 2006
12. Douglas, B.E. and Mc Daniel, D.H., Concepts & Models of Inorganic Chemistry, Oxford, 1970
13. Shriver, D.D. & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
14. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications 1962.
15. Francis, P. G. Mathematics for Chemists, Springer, 1984
16. Prakash Satya, Tuli G.D., Basu S. K. Madan R.D., Advanced inorganic Chemistry, S. Chand publishing.
17. PURI, SHARMA KALIA, Principles of Inorganic Chemistry, Shoban Lal Nagin Chand & Co.
18. R.D. Madan, Principles of Inorganic Chemistry, S CHAND PUBLISHERS
19. TN SRIVASTVA AND PC KAMPOJ, SYSTEMATIC NALYTICAL CHEMISTRY, SHOBAN LAL NAGIN
CHAND
Digital links
 http://heecontent.upsdc.gov.in/Home.aspx
https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm https://nptel.ac.in/courses/104/103/104103071/#
https://swayam.gov.in
This course can be opted as an elective by the students of following subjects: Open for all
Course prerequisites: To study this course, a student must have had the Chemistry in IV Semester of Diploma
course in Chemistry
Suggested Continuous Evaluation Methods:
House Examination/Test: 10 marks
Written Assignment/Presentation/Project/Research Orientation/Term papers/Seminar: 10 Marks
Class performance/Participate: 5 Marks
Suggested equivalent online courses:
Further Suggestions: None

Programme / Class: Bachelors of Science	Year: Third	Semest	er: Fifth	
Subject: Chemistry				
Course Code: B020503P	Course Title	: Qualitative Analy	vsis	
Course outcomes:			Bloom Taxor	nomy
• CO1. Upon completion of this course and skills to: understand the labo inorganic mixtures and organic comp	ratory method		ε	2-K5
• CO2. Identification of acidic and bas	sic radicals in i	norganic mixtures.	K4	I, K5
CO3. Separation of organic compound	nds from mixtu	ıre.	Kź	2, K5
• CO4. Elemental analysis in organic	compounds.		K	2, K4
• CO5. Identification of functional gro	oup in organic o	compounds.	K	3, K4
CO6. Identification of organic comp	ounds.		K	2, K3
Credits: 2		Core: Compulsory	, ,	
Max. Marks: 25+75		Min. Passing Mar	ks: as per rules	
Total No. of Lectures-Tutorials-Practical (in I	hours per week): L-T-P:0-0-2		
				Total No. of
S. No.	Objectives			Lectures/ Hours (60)
1 Inorganic Qualitative Analys	sis:			
Semi micro Analysis – cation	analysis, sepa	aration and identifi	cation of ions from	16
Groups I, II, III, IV, V and VI, 4+ 2 or 3+3.	Anion analysis	s. Mixture containin	ng 6 radicals- 2+4 or	
2 Elemental analysis and ident	ification of fu	nctional groups:		14
Detection of extra elements (N	I, S and haloge	ens) and functional	groups (phenolic,	

		carboxylic, carbonyl, esters, carbohydrates, amines, amides, nitro and anilide) in				
		simple organic compounds				
		empre ergante compounds				
	3	Separation of Organic Mixture:	10			
		Analysis of an organic mixture containing two solid components using water,				
		NaHCO ₃ and NaOH for separation and preparation of suitable derivatives.				
	4	Identification of organic compounds:	20			
		Identification of an organic compound through the functional group analysis,				
		determination of melting point and preparation of suitable derivatives. Identification				
		of the organic compounds by IR and PMR Spectroscopy. (Photocopies of the spectra				
		to be provided to the students).				
ug	gested R	eadings:				
1.	Svehla,	G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.				
2.	Mendh	am, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.				
3.						
4.	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.					
5.	Harris, I	D.C.Exploring Chemical Analysis, 9thEd. New York, W.H. Freeman, 2016.				
6.		r, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 20 notion of Hindi language, course books published in Hindi may be prescribed by the U				
		Digital Links				
		• https://www.labster.com/chemistry-virtual-labs/				
		 https://www.vlab.co.in/broad-area-chemical-sciences 				
		• http://chemcollective.org/vlab.				
` his	course c	an be opted as an elective by the students of following subjects: Open for all				
••••						
Cou	rse prer	equisites: To study this course, a student must have had the subject "Chemistry" in IV	Semester			
		ourse in Chemistry.				

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech, Approved by (AICTE)

Suggested Continuous Evaluation Methods: Suggested equivalent online courses:

Further Suggestions: None

Programme/Class				
Subject: Chemistr	у			
Course Code: BO	20601T	Course Title: (Drganic Synthesis B	
Course outcomes:			I	Bloom Taxonomy
	paper provides detailed k s and functional groups in	c ·	is of various class of organic	K4, K5
provides jo	•	*	of organic chemistry which o chemicals, drugs, medicines,	K2, K4
	study of natural products ward identifying novel bio	•	mpounds offers an excellent number of diseases.	K2, K4
pharmaceu	tical drugs for a number of an analytical aptitude	of diseases including	tant role in the development of cancer and infection. It relates various industrially important	K3, K5
medicinal		_	s <i>etc</i> . and their chemistry and compounds as lead molecules	K2, K5
Credits: 4			Core : Compulsory	
Max. Marks: 25+´	75	I	Min. Passing Marks: as per rule	es
Total No. of Lectur	res-Tutorials-Practical (in	hours per week): L-7	Г-Р: 4-0-0	
Unit		Topics		Total No. of Lectures/

		Hours (60)
	Peogente in Organie Synthesia	
	Reagents in Organic Synthesis:	
	A detailed study of the following reagents in organic transformations Oxidation with	
Ι	DDQ, CAN and SeO ₂ , m-CPBA, Jones Oxidation, PCC, PDC, PFC, Collin's reagent	6
	and ruthenium tetraoxide. Reduction with NaBH4, LiAlH4, Meerwein- Ponndorf-	
	Verley (MPV) reduction, Wilkinson's catalyst, Birch reduction, DIBAL- H.	
	Organometallic Compounds:	4
П	Organomagnesium compounds: The Grignard reagents, formation, structure and	
	chemical reactions. Organozinc compounds: formation and chemical reactions.	
	Organolithium compounds: formation and chemical reactions.	
	Chemistry of Aldehydes and ketones:	
ш	Nomenclature and structure of the carbonyl groups, synthesis of aldehydes and	10
	ketones with particular reference to the synthesis of aldehydes from acid chlorides	2
	synthesis of aldehydes and ketones uses 1, 3-dithianes, synthesis of ketones from	
	nitrites and from carboxylic acids, Physical properties. Mechanism of nucleophillic	
	additions to carbonyl group with particular emphasis on benzoin, aldol, Perkin and	
	Knoevenagel condensations, Condensation with ammonia and its derivatives. Wittig	5
	reaction, Mannich reaction. Oxidation of aldehydes, Cannizzaro reaction, MPV	,
	Clemmensen, Wolff-Kishner, LiAlH ₄ and NaBH ₄ reductions. Halogenation of	f
	enolizable ketones. An introduction to α , β -unsaturated aldehydes and Ketones.	
	Carboxylic acids and their Functional Derivatives:	
IV	Nomenclature and classification of aliphatic and aromatic carboxylic acids	. 8
	Preparation and reactions. Acidity (effect of substituents on acidity) and sale	t
	formation, Reactions: Mechanism of reduction, substitution in alkyl or aryl group	
	Preparation and properties of dicarboxylic acids such as oxalic, malonic, succinic,	,
	glutaric, adipic and phthalic acids and unsaturated carboxylic acids such as acrylic	2
	crotonic and cinnamic acids, Reactions: Action of heat on hydroxy and amino acids,	
	and saturated dicarboxylic acids, stereospecific addition to maleic and fumaric	

	acids. Preparation and reactions of acid chlorides, acid anhydrides, amides and	
	esters, acid and alkaline hydrolysis of esters, <i>trans</i> -esterification.	
	Organic Synthesis via Enolates: Acidity of α -hydrogens, alkylation of diethyl	
v	malonate and ethyl acetoacetate, Synthesis of ethyl acetoacetate: the Claisen	5
	condensation, Keto-enol tautomerism of ethyl acetoacetate. Alkylation of 1, 3-	
	dithianes, Alkylation and acylation of enamines.	
	Organic Compounds of Nitrogen: Preparation of nitroalkanes and nitroarenes,	
VI	Chemical reactions of nitroalkanes. Mechanisms of nucleophilic substitution in	10
VI	nitroarenes and their reductions in acidic, neutral and alkaline media, Picric acid.	
	Halonitroarenes: reactivity, Structure and nomenclature of amines, physical	
	properties, Stereochemistry of amines, Separation of a mixture of primary, secondary	
	and tertiary amines. Structural features effecting basicity of amines. Amine salts as	
	phase-transfer catalysts, Preparation of alkyl and aryl amines (reduction of nitro	
	compounds, nitrities), reductive amination of aldehydic and ketonic compounds,	
	Gabriel phthalimide reaction, Hofmann bromamide reaction. Reactions of amines,	
	electrophilic aromatic substituton in aryl amines, reactions of amines with nitrous	
	acid. Synthetic transformations of aryl diazonium salts, azo coupling.	
	Hatana analia Chamiatana	
	Heterocyclic Chemistry:	
	Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene	
N/II	and pyridine, Methods of synthesis and chemical reactions with particular emphasis	8
VII	on the mechanism of electrophilic substitution, Mechanism of nucleophilic	0
	substitution reaction in pyridine derivatives, Comparison of basicity of pyridine,	
	piperidine and pyrrole. Introduction to condensed five and six membered	
	heterocycles, Preparation and reactions of indole, quinoline and isoquinoline with	
	special reference to Fisher indole synthesis, Skraup synthesis and Bischler-	
	Nepieralski synthesis, Mechanism of electrophilc substitution reactions of indole,	
	quinoline and isoquinolin.	
	Natural Products Alkaloids & Terpenes:	
VIII	Natural occurrence, General structural features, their physiological action,	7

(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Hoffmann's exhaustive methylation, Emde's modification; Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine. Natural Occurrence and classification of terpenes, isoprene rule.

Suggested Readings:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003
- 3. Carey, F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2 nd edition, Oxford University Press, 2012. 22. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 6. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 7. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 8. Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Welly & Sons (1976).
- 9. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 10. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural
- 11. Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 12. Singh, J.; Ali, S. M. & Singh, J. Natural Product Chemistry, Pragati Prakashan (2010).
- 13. Organic Chemistry III, Krishna Prakashan Media, Meerut, Third Edition, 2019.
- 14. Mukherji and Singh, Reaction Mechanism in Organic Chemistry, Laxmi Publications, 2016.
- 15. Mukherji, Singh, Kapoor, Organic Chemistry, Vol 1,2, and 3, New Age International 2014.
- 16. Arun Bahl & B S Bahl, Advanced Organic Chemistry, S. Chand Publishing.
- 17. TN SRIVASTVA AND PC KAMPOJ, SYSTEMATIC NALYTICAL CHEMISTRY, SHOBAN LAL NAGIN CHAND

Suggestive digital platforms web links:

http://heecontent.upsdc.gov.in/Home.aspx https://nptel.ac.in/courses/104/103/104103111/ https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm https://nptel.ac.in/courses/104/103/104103071/# https://swayam.gov.in

रूवाजा मुईनुद्दीन चिश्ती भाषा विश्वविद्यालय, लखनऊ, उत्तर प्रदेश (भारत) Khwaja Moinuddin Chishti Language University, Lucknow, U.P. (India) U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(1) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

This course can be opted as an elective by the students of following subjects: Open for all

But special for B.Sc. Math, B.Sc. Statistic, B.Sc. Nutrition, B.Sc. Biotech, B.Sc. Forestry & B.Sc. Agriculture, B.Sc. Biology

Course prerequisites: To study this course, a student must have had the subject Medical Microbiology &

Immunology in V Semester of Degree in Bachelor of Science.

Suggested Continuous Evaluation Methods :

House Examination/Test : 10 marks

Written Assignment/Presentation/Project/Research Orientation/Term papers/Seminar: 10 Marks

Class performance/Participate: 5 Marks

Suggested equivalent online courses:

Further Suggestions: None

Programme/Class: Bachelor of Science		Year: Third		Semester: Sixth		
Subject: Chemistry						
Course Code: B020602T Course Title:			Chemica	l Energetics and Radio	Chemi	stry
Course outcomes :		1]	Bloom	Taxonomy
of thermody system, ele	successful completion of this c ynamics and its applications, p ectro chemistry, ionic equil ric measurements.	phase equilibria	a of one	e and two component		K1-K6
Credits: 4			Core: Co	ompulsory		
Max. Marks: 25+75	5	I	Min. Pas	sing Marks: as per rul	le	
Total No. of Lecture	s-Tutorials-Practical (in hours p	er week): L-T-	P: 4-0-0			
Unit		Topics				Total No. of Lectures/ Hours (60)
Ι	Thermodynamics-I: First Law of Thermodynamic enthalpy. Heat capacity, heat of relationship. Joule's law – Jou Calculation of w, q, dU & dH f adiabatic conditions for reve standard enthalpy of formation Heat of reaction at constan neutralization. Bond dissociation data, temperature dependence of	capacities at con- ule Thomson co- for the expansionersible process. In – Hess's law of t pressure and ton energy and t	nstant vo pefficient on of idea . Thermo f heat sur l at con its calcul	blume and pressure and t and inversion temper al gases under isotherm ochemistry: Standard mmation and its applica stant volume. Enthal lation from thermo-che	d their cature. al and state, ations. py of	8

		· · · · · · · · · · · · · · · · · · ·
	Thermodynamics II:	
	Second Law of Thermodynamics, Need for the law, different statements of the law,	
II	Carnot cycle and its efficiency. Carnot theorem. Thermodynamic scale of	10
	temperature. Concept of Entropy, Entropy as a state function, entropy as a function	
	of V & T, entropy as a function of P & T, entropy change in physical change,	
	Clausius inequality, entropy as a criteria of spontaneity and equilibrium. Entropy	
	change in ideal gases and mixing of gases. Gibbs and Helmholtz Functions Gibbs	
	function (G) and Helmhotz function (A) as thermodynamic quantities. A & G as	
	criteria for thermodynamic equilibrium and spontaneity, their advantage over	
	entropy change, Variation of G and A with P, V and T. Third Law of	
	Thermodynamics; Nernst heat theorem, statement and concept of residual entropy.	
	Nernst distribution law – Thermodynamic derivation, applications.	
	Electrochemistry: Electrical transport:- Conduction in metals and in electrolyte	
Ш	solutions, specific conductance molar and equivalent conductance, measurement of	8
	equivalent conductance, variation of molar, equivalent and specific conductances	
	with dilution. Migration of ions and Kohlrausch law, Arrhenius theory of electrolyte	
	dissociation and its limitations. Weak and strong electrolytes. Ostwald's dilution	
	law, its uses and limitations. Debye-Huckel-Onsager equation for strong	
	electrolytes (elementary treatment only). Transport number, definition and	
	determination by Hittorf method and moving boundary method.	
	Ionia Equilibrium: Electrode granting Negation derivation of cell EME and	3
IV	Ionic Equilibrium: Electrode reactions, Nernst equation, derivation of cell EMF and single electrode potential, standard hydrogen electrode-reference electrodes and their	
	applications, standard electrode potential, sign conventions, Electrolytic and	
	Galvanic cells–Reversible and irreversible cells, conventional representation of	Ι
	electrochemical cells. EMF of a cell and its measurement. Definition of pH and pKa	
	, determination of pH using hydrogen, quinhydrone and glass electrodes by	
	potentiometric methods. Buffers – Mechanism of buffer action, Henderson-Haze	1
	equation, application of buffer solution. Hydrolysis of salts.	
	Photo Chemistry: Interaction of radiation with matter, difference between	
V	thermal and photochemical processes. Laws of photochemistry: Grothus- Drapper	
v	law, Stark-Einstein law, Jablonski diagram depicting various processes occurring	04

	in the excited state, qualitative description of fluorescence, phosphorescence, non-
	radiative processes (internal conversion, intersystem crossing), quantum yield,
	photosensitized reactions – energy transfer processes (simple examples), kinetics
	of photochemical reactions.
VI	Colligative Properties: Ideal and non-ideal solutions, methods of expressing
	concentrations of solutions, activity and activity coefficient. Dilute solution,
	colligative properties, Raoult's law, relative lowering of vapour pressure, molecular
	weight determination, Osmosis, law of osmotic pressure and its measurement,
	determination of molecular weight from osmotic pressure, Elevation of boiling point
	and depression of freezing, Thermodynamic derivation of relation between
	molecular weight and elevation in boiling point and depression in freezing point.
	Experimental methods for determining various colligative properties. Abnormal
	molar mass, Van't Hoff factor, Colligative properties of degree of dissociation and
	association of solutes.
VII	Surface Chemistry:
	Adsorption: Physical and chemical adsorption; Freundlich and Langmuir adsorption
	isotherms; multilayer adsorption and BET isotherm (no derivation required); Gibbs
	adsorption isotherm and surface excess; Heterogenous catalysis (single reactant).
	Colloids: Lyophobic and lyophilic sols, Origin of charge and stability of lyophobic
	colloids, Coagulation and Schultz-Hardy rule, Zeta potential and Stern double layer
	(qualitative idea), Tyndall effect; Electrokinetic phenomena (qualitative idea only);
	Stability of colloids and zeta potential; Micelle formation.
VIII	Radiochemistry: Natural and induced radioactivity; radioactive decay-a-decay, b-
,	decay, g-decay; neutrom emission, positrom emission, electron capture; unit of
	radioactivity (Curie); half-life period; Geiger-Nuttal rule, radioactive displacement
	law, radioactive series. Measurement of radioactivity: ionization chamber, Geiger
	counters, scintillation counters. Applications: energy tapping, dating of objects,
	neutron activation analysis, isotopic labelling studies, nuclear medicine-99mTc

(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Suggested Readings:

- 1. Foye, W.O., Lemke, T.L. & William, D.A.: Principles of Medicinal Chemistry, 4th ed., B.I. Waverly Pvt. Ltd. New Delhi.
- 2. Peter Atkins & Julio De Paula, Physical Chemistry 9th Ed., Oxford University Press (2010).
- 3. Metz, C. R. Physical Chemistry 2nd Ed., Tata McGraw-Hill (2009).
- 4. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press (2006).
- 5. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 6. Castellan, G. W. Physical Chemistry 4th Edn. Narosa (2004).
- 7. Allen Bard, J Larry. Faulkner R, Fundamentals of Electrochemical methods –fundamentals and applications, new York John, Wiley & sons, 2001.
- 8. H. J. Arnikar, Essentials of Nuclear Chemistry, 4th ed., New Age International, New Delhi, 1995.
- 9. Bariyar, and Goyal, Physical Chemistry-II, Krishna Prakashan Media, Meerut, Third Edition, 2019.
- 10. TN SRIVASTVA AND PC KAMPOJ, SYSTEMATIC NALYTICAL CHEMISTRY, SHOBAN LAL NAGIN CHAND.
- 11. KL KAPOOR, THERMODYNAMICS AND CHEMICAL EQUILIBRIUM VOL-2, Macmillan.
- 12. Bahl and Bahl, Essential of physical chemsitry, S CHAND

Suggestive digital platforms web links

 http://heecontent.upsdc.gov.in/Home.aspx https://swayam.gov.in/ https://www.coursera.org/learn/physicalchemistry https://www.mooc-list.com/tags/physical-chemistry https://www.openlearning.com/courses/introduction-to-physical-chemistry

This course can be opted as an elective by the students of following subjects: Open for all

But special for B.Sc. Math, B.Sc. Statistic, B.Sc. Nutrition, B.Sc. Biotech, B.Sc. Forestry, B.Sc. Biology & B.Sc. Agriculture

Course prerequisites: To study this course, a student must have had the subject "Chemistry in V Semester of Degree in Bachelor of Science.

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 marks

Written Assignment/Presentation/Project/Research Orientation/Term papers/Seminar: 10 Marks

Class performance/Participate: 5 Marks

Suggested equivalent online courses:

https://www.classcentral.com/course/swayam-food-microbiology-and-food-safety-17609

Further Suggestions: None

रूवाजा मुईनुद्दीन चिश्ती भाषा विश्वविद्यालय, लखनऊ, उत्तर प्रदेश (भारत) Khwaja Moinuddin Chishti Language University, Lucknow, U.P. (India) C.P. STATE GOVERNMENT UNIVERSITY. (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Programme/	Class: Bachelor of Science	Year: Third		Semester: Sixth	
Subject: Cher	nistry				
Course Code	: B020603P	Course Title:	Analytica	l Methods	
Course outco	mes:			Bloom T	axonomy
quant R <i>f</i> va		igh gravimetric ganic compound	method; o ls through erform th Core: Co	determination of n paper and thin	
Total No. of L	ectures-Tutorials-Practical (in	hours per week)): L-T-P:	0-0-2	
S. No.	Experiments	Objectives should be only		onstration.	Total No. of Lectures/ Hours (60)
1	Gravimetric Analysis: 1. Analysis of Cu as CuSC 2. Analysis of Ni as Ni (di 3. Analysis of Ba as BaSC	methylglyoxime).		30
2	Paper Chromatography: Ascending and Circular. De compounds: Separation of aspartic acid Leucine and gl mixture of D, L – alanine, g (4:1:5). Spray reagentninhyc galactose and D -fructose u reagent – aniline hydrogen p	a mixture of ph utamic acid. Spr lycine, and L-leu lrin. Separation sing n- butanol:	nenylalani ray reager ucine usir of monos	ne and glycine. Alanine nt – ninhydrin. Separation ng n-butanol:acetic acid: v accharides – a mixture o	and of a vater
3	Thin Layer Chromatograp Determination of Rf values green leaf pigments (spinach	and identificatio	e	· ·	n of 8

ख्वाजा मुईनुद्दीन चिश्ती भाषा विश्वविद्यालय, लखनऊ, उत्तर प्रदेश (भारत) Khwaja Moinuddin Chishti Language University, Lucknow, U.P. (India) L.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(1) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

	2,4- dinitrophenylhydrazones of acetone, 2-butanone, hexan-2, and 3-one using	
	toluene and light petroleum (40:60) Separation of a mixture of dyes using	
	cyclohexane and ethyl (8.5:1.5).	
	Thermochemistry:	
4		14
	1. To determine the solubility of benzoic acid at different temperatures and to	17
	determine ΔH of the dissolution process.	
	2. To determine the enthalpy of neutralization of a weak acid/weak base versus	
	strong base/strong acid and determine the enthalpy of ionization of the weak	
	acid/weak base.	
	3. To determine the enthalpy of solution of solid calcium chloride and calculate	
	the lattice energy of calcium chloride from its enthalpy data using Born-Haber cycle.	
Suggested Re	adings.	
	uungo,	
Ū.	D.A., West.D.M and Holler F. J., "Analytical Chemistry: An Introduction", 7 th edition, publishing, Philadelphia, (2010).	Saunders
•	rgis.G" Analytical Chemistry: Principles and Techniques" Pearson©(1988) Note: Fo	
promotic	on of Hindi language, course books published in Hindi may be prescribed by the Univ	ersity.
Digital links		
	https://www.labster.com/chemistry-virtual-labs/	
	 https://www.vlab.co.in/broad-area-chemical-sciences. 	
	 http://chemcollective.org/vlab 	
This course ca	n be opted as an elective by the students of following subjects: Open for all	
	uisites: To study this course, a student must have had the subject "Chemistry" in V Se	emester of Degree
in Bachelor of	Science.	
Suggested Co	ntinuous Evaluation Methods:	
buggisitu Cu		
•••••		•••••
Suggested eau	ivalent online courses:	
Further Sugg	estions: None	
00		