LAt ~;//fcr"5 Sy Lj,’/b"-d Fesa1 d) wt ;ch)’f;{?'

WW&?%@G@WW%&W TGS, ICX Tod, W

Khwaja Moinuddin Chishti Urdu, Arabi-Farsi University, Lucknow, Uttar Pradesh, India

U.P. STATE GOVERNMENT UNIVERSITY
(Recognised U/S 2(f) & 12 (B) of the UGC Act 1956 & B.Tech. approved by AICTE)

FACULTY OF ENGINEERING & TECHNOLOGY

COMPUTER SCIENCE & ENGINEERING
withv Specialization using AI & ML

Curriculum Structure

(Third Year- V Semester)

[Effective from Session 2021-221

W

III Year: V Semester

STUDY & EVALUATION SCHEME
B.Tech. (CSE specialization with AI& ML)

Subject . Sessional Assessment Subject .
S.No. Subject name Credit
code L MST | TA | Total | SEE | Total
THEORY SUBJECT
ACS501 | Design & Analysis of| 3 15 15 30 70 100 3
) Algorithms :
5 ACS502 [Python Programming 3 15 15 30 70 100 3
3 ACS503 [Software Engineering 3 15 15 30 70 100 3
4 ACSs04 |Embedded Systems 3 15 15 30 70 100 4
Formal Language & 3 15 15 30 70 100 4
5 ACS505 | Automata Theory
6 EC501 |Microprocessor 3 15 15 30 70 100 3
7 GP501 General Proficiency } j B >0 0 >0 0
PRACTICAL/DESIGN/DRAWING
Design & Analysis of
7 ACS551 ; 70 1
55 Azt Tah 0 15 15 30 00 1
Python Programming
8 ACS552 0 15 15 30 70 100 1
Lab
9 |acsssy |Software Engineering| 15 | 15 | 30 | 70 100 1
Lab
0 |acsssa |Caibedded Systems 0 15 | 15 | 30 | 70 100 1
Lab
Total 15 1000 24
L- Lecture
T -Tutorial
P-Practical

MST- Mid Semester Test
TA-Teacher's Assessment

SEE- Semester End Examination

DESIGN & ANALYSIS OF ALGORITHMS
(ACS501)

Objective: To understand the importance of algorithm and its complexity of an|
algorithm in terms of time and space complexities.

Unit Topic

I Introduction: Algorithms, Analyzing algorithms, Complexity of algorithms,
Growth of Functions, Recurrences, Substitution method, Iteration method,
Master method, Merge Sort, Quick-Sort, Heap Sort, Shell Sort, Sorting in linear
time.

I |Advanced Data Structures: Red-black trees, Augmenting data structures,
Order-statistic tree, B-Trees, Binomial heaps, Fibonacci heaps.

II [Dynamic Programming: Elements of dynamic programming, Assembly-line
scheduling problem, Matrix chain multiplication, finding longest common
subsequence,0/1 Knapsack problem;
Greedy Algorithm: Elements of greedy strategy, Activity selection problem,
Huffman encoding, Task-scheduling problem, Knapsack problem, Amortized
analysis.

IV |Graph Algorithms: Searching in graph, Spanning trees, Minimum cost
spanning trees: Kruskal’s and Prim’s algorithms; Single source shortest path
algorithms, Dijkstra’s and Bellman Ford algorithms; All pair shortest paths
algorithms, Floyd Warshal’s algorithm, Network flow problem.
Backtracking, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum|
of Subsets, Branch and Bound with Examples Such as Travelling Salesman
Problem.
V String Matching Algorithms: Naive string-matching algorithm, Rabin-Karp
algorithm, Knuth-Morris-Pratt algorithm. Introduction of NP-completeness,
Randomized algorithms and Approximation Algorithms

Text Book (s):

1. Introduction to Algorithms, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and
Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms — E. Horowitz et al.

3. Design & Analysis of Algorithms, S. Sridhar, Oxford
4. Design & Analysis of Algorithms, Sharma, Khanna Publishing House, N.Delhi

Python Programming
(ACS502)

Objective: To familiarize the students with advanced databases and techniques of]
retrieving and storing information.

Unit Topic

I Introduction To Python: Installation and Working with Python
Understanding Python variables Python basic Operators Understanding python
blocks

Values and Variables : Integer and String Values, Identifiers, User Input,
String Formatting, Expressions and Arithmetic Examples

I [Python Data Types: Declaring and using Numeric data types: int, float,
complex Using string data type and string operations Defining list and list
slicing Use of Tuple data type

II [Python Conditional Statements and looping: If, If- else, Nested if-else For,
While Nested loops

IV | Python String, List And Dictionary Manipulations: Building blocks of
python programs, Understanding string in build methods, List manipulation
using in build methods ,Dictionary manipulation Programming using string,
list and dictionary in build functions

V. Python Object Oriented Programming: Oops Concept of class, object and|
instances Constructor, class attributes and destructors ,Real time use of class in
live projects ,Inheritance , overlapping and overloading operators Adding and|
retrieving dynamic attributes of classes Programming using Oops support..

References:
Chun, J] Wesley, Core Python Programming, Second Edition, Pearson, 2007 Reprint 2010

Essential Reading / Recommended Reading
[1] Barry, Paul, Head First Python, 2nd Edition, O Rielly, 2010

[2] Lutz, Mark, Learning Python, 4th Edition, O Rielly, 2009

W 4l

SOFTWARE ENGINEERING
(ACS503)

Objective: The course is aimed at enhancing skills that will enable the student to
develop business software’s that are simple reliable and capable of modification as per

requirement.
Unit Topic
I Introduction to Software Engineering, Software Components, Software

Characteristics, Software Crisis, Software Engineering Processes.

Software Development Life Cycle (SDLC) Models: Water Fall Model,
Prototype Model, Spiral Model, Evolutionary Development Models, Iterative
Enhancement Models.

I Software Requirement Specifications (SRS). Requirement Engineering Process:
Elicitation, Analysis, Documentation, Review and Management of User Needs,
Feasibility Study, Information Modeling, Data Flow Diagrams, Entity
Relationship Diagrams, Decision Tables, SRS Document, IEEE Standards for
SRS. Software Quality Attributes, Software Quality Assurance (SQA):
Verification and Validation, SQA Plans, Software Quality Frameworks, ISO
9000 Models, SEI-CMM Model.
III Software Design: Basic Concept of Software Design, Architectural Design, Low|
Level Design: Modularization, Design Structure Charts, Pseudo Codes, Flow
Charts, Coupling and Cohesion Measures, Design Strategies: Function Oriented
Design, Object Oriented Design, Top-Down and Bottom-Up Design. Software]
Measurement and Metrics: Various Size Oriented Measures: Halestead’s
Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity]
Measures: Control Flow Graphs.

IV Software Testing: Testing Objectives, Unit Testing, Integration Testing,
Acceptance Testing, Regression Testing, Testing for Functionality and Testing
for Performance, Top-Down and Bottom-Up Testing Strategies: Test Drivers
and Test Stubs, Structural Testing (White Box Testing), Functional Testing]
(Black Box Testing), Test Data Suit Preparation, Alpha and Beta Testing of]
Products. Static Testing Strategies: Formal Technical Reviews (Peer Reviews),
Walk Through, Code Inspection, Compliance with Design and Coding
Standards.

V Software Maintenance and Software Project Management, Software as an
Evolutionary Entity, Need for Maintenance, Categories of Maintenance:
Preventive, Corrective and Perfective Maintenance, Cost of Maintenance,
Software Re-Engineering, Reverse Engineering. Software Configuration
Management Activities, Change Control Process, Software Version|Control, An|
Overview of CASE Tools. Estimation of Various Parameters suych as Cost,
Efforts, Schedule/Duration, Constructive Cost Models (COCOMQ), Resource
Allocation Models, Software Risk Analysis and Management.

References: {

1. Software Engineering: A Practitioner’s Approach, Pressman Roger, TMH, 2009. \}\

2. An Integrated Approach to Software Engineering, Pankaj Jalote. Narosa Pub, 2014.

3. Software Engineering Concepts: Richard Fairly, Tata McGraw Hill, 2015. g/ %
i o)

EMBEDDED SYSTEM
(ACS504)

Objective: To introduce the basic concepts of Embedded Systems and the various
techniques used for Embedded Systems with real time examples.

Unit Topic
I Hardware Concepts -Application and characteristics of embedded systems,
Overview of Processors and hardware Units in an embedded system, General
purpose processors, Microcontrollers: 8051.

I |Application- Specific Circuits (ASICs), ASIP, FPGA, ARM-based System on 3|
Chip (SoC), Network on Chip (NoC), Levels of hardware modelling, Verilog,
Sensors, A/D-D/A converters, Actuators, Interfacing using RS-232, UART,
USB, I2C, CAN bus, Flexray, SRAM and DRAM, Flash memory.

III Real-Time Operating Systems- Real-Time Task Scheduling: Some important
concepts, Types of real-time tasks and their characteristics, Task scheduling,
Clock-Driven scheduling, Hybrid schedulers, Event-Driven scheduling, Earliest
Deadline First (EDF) scheduling, Rate monotonic algorithm (RMA).

IV |Commercial Real-time operating systems: Time services, Features of a Real-
time operating system, Unix-based Real-time operating systems, POSIX-RT, Al
survey of contemporary Real- time operating systems, Microkernelbased
systems, Benchmarking real-time systems.

V [Embedded Application Development - UML 2.0, State charts, General language
characteristics, MISRA C, Hardware/Software Co- design, Hardware/software
partitioning, Testing embedded systems, Design for testability and Self-test.

References:

1. Embedded Systems Design — A Unified Hardware /Software Introduction, by Frank
Vahid and Tony Givargis, John Wiley, 1999.

2. An Embedded Software Primer, by David E.Simon, Pearson Education/Asia, 1999.

THEORY OF AUTOMATA & FORMAL LANGUAGE
(ACS505)

Objective: The objective of this course is to provide basic definitions that are associated with
theory of computation and to give an overview, applications, environment of computation.

Unit

Topic

I

Introduction: Alphabets, Strings and Languages; Automata and Grammars, Chomsky’s
classification. Finite Automata: Deterministic finite Automata (DFA)-Formal
Definition, Simplified notation: State transition graph, Transition table, Language of]
DFA, Nondeterministic finite Automata (NFA), NFA with epsilon transition, Language
of NFA, Equivalence of NFA and DFA, Minimization of Finite Automata,
Distinguishing one string from other, Myhill-Nerode Theorem.

II

Regular Expression: Regular expression (RE), Definition, Operators of regular
expression and their precedence, Algebraic laws for Regular expressions, Kleen’s
Theorem, Regular expression to FA, DFA to Regular expression, Arden Theorem,
Regular Languages and Its Properties: Non Regular Languages, Pumping Lemma for
regular Languages. Application of Pumping Lemma, Closure properties of Regular
Languages, Decision properties of Regular Languages,
FA with output: Moore and Mealy machine, Equivalence of Moore and Mealy Machine,
Applications and Limitation of FA.

I

Context free grammar (CFG) and Context Free Languages (CFL): Definition,
Examples, Derivation, Derivation trees, Ambiguity in Grammer, Inherent ambiguity,
Ambiguous to Unambiguous CFG, Useless symbols, Simplification of CFGs, Normal
forms for CFGs: CNF and GNF, Closure properties of CFLs, Decision Properties of
CFLs: Emptiness, Finiteness and Memership, Pumping lemma for CFLs.

v

Push Down Automata (PDA): Description and definition, Instantaneous Description,|
Language of PDA, Acceptance by Final state, Acceptance by empty stack, Deterministic
PDA, Equivalence of PDA and CFG, CFG to PDA and PDA to CFG, Two stack PDA.

Turing machines (TM): Basic model, definition and representation, Instantaneous
Description, Language acceptance by TM, Variants of Turing Machine, TM as
Computer of Integer functions, Universal TM, Church’s |Thesis. Recursive and
Recursively Enumerable languages. Undecidability: Halting problem, Introduction to
Undecidability, Undecidable problems about TMs. Post correspgndence problem (PCP),
Modified PCP, Introduction to recursive function theory.

References:
1. J Hopcroft, JD Ullman, R Motwani, Introduction to Automata Theory, Languages and

Computation, Pearson, 2006 /
06. %

2. M Sipser, Introduction to the Theory of Computation, Thomson,

//\ ,’ o
L
i

AVIN

MICROPROCESSOR
(EC501)

UNITI

Introduction to 8085A CPU architecture-register organization, addressing modes and their
features. Software instruction set and Assembly Language Programming. Pin description and
features

UNIT I1

Instruction cycle, machine cycle, Timing diagram.

Hardware Interfacing: Interfacing memory, peripheral chips (I0 mapped 10 & Memory mapped
10).

UNIT III
Interrupts and DMA.
Peripherals: 8279, 8255, 8251, 8253, 8237, 8259, A/D and D/A converters and interfacing of the

same.

UNIT IV

16 bit processors: 8086 and architecture, segmented memory has cycles, read/write cycle in
min/max mode. Reset operation, wait state, Halt state, Hold state, Lock operation, interrupt
processing. Addressing modes and their features. Software instruction set (including specific
instructions like string instructions, repeat, segment override, lock prefizers and their use) and
Assembly Language programming with the same

UNIT V
Typical applications of a microprocessor.
Brief overview of some other microprocessors (eg. 6800 Microprocessor).

Reference Books:
1. Microprocessor architecture, programming and applications with 8085/8085A, Wiley eastern

Ltd, 1989 by Ramesh S. Gaonkar.
2. Intel Corp: The 8085 / 8085A. Microprocessor Book — Intel marketing communication, Wiley
inter science publications, 1980.

3. An introduction to micro computers Vol. 2 — some real Microprocessor — Ga‘ otia Book
Source, New Delhi by Adam Osborne and J. Kane

4. Advanced Microprocessors by Ray and Bhurchandi - TMH

5. Intel Corp. Micro Controller Handbook — Intel Publications, 1994.

6. Microprocessors and Interfacing by Douglas V. Hall, McGraw Hill International Ed. 1992

7. Assembly Language Programming the IBM PC by Alan R. Miller, Subex Inc, 1987

8. The Intel Microprocessors: 8086/8088, 80186, 80286, 80386 & 80486, Bary
Hall, India 1996

. Brey, Prentic

DESIGN & ANALYSIS OF ALGORITHM LAB
(ACS551)

LIST OF EXPERIMENTS

Implementation of Quick Sort and Merge Sort.
Implementation of Linear-time Sorting Algorithms.
Implementation of Red-Black Tree operations.
Implementation of Binomial Heap operations.
Implementation of an application of Dynamic Programming.
Implementation of an application of Greedy Algorithm.
Implementation of Minimum Spanning Tree Algorithm.

Implementation of Single-pair shortest path Algorithm.

L P SR g ke B

Implementation of All-pair shortest path Algorithm.
10. Implementation of String Matching Algorithm.

=%
\ M/ L X@‘\

-

v
o

i

Python Programming LAB
(ACS552)

LIST OF EXPERIMENTS

Nele BN o NEV I SRUCH S I

. Implement a sequential search
. Create a calculator program

. Explore string functions

. Implement Selection Sort

. Implement Stack

. Read and write into a file

Demonstrate usage of basic regular expression
Demonstrate use of List

Demonstrate use of Dictionaries

SOFTWARE ENGINEERING LAB
(ACS553)

LIST OF EXPERIMENTS

1. Introduction to Microsoft Project Professional.

2. Basic steps required to create project and prepare it for data entry (project tasks, sequence
the tasks and estimate task duration).

3. Setting up a project [Eating Breakfast] and establish the basic constraints that project will
use for its calculation. Analyze the project from different view [Gantt Chart, Network
Diagram]

4. Setting up a project [Refurbishment of Workshop] and identifying relationship among the
different task and subtask.

5. Setting up a project [Exam Cell Activities] and explain how to enter resources and
specific information in Microsoft Project and resources to specific tasks.

6. Case Study: Project Windows 8 (Module works on windows Vista and now transform the

module to work on Window 8).

Embedded System LAB
(ACS554)

LIST OF EXPERIMENTS

Write a program to toggle all the led to port and with some time delay using ARM7

Write a program to interface LCD with ARM7

Write a program to interface 4*4 matrix keypad with ARM7

Write a program for interfacing LED and PWM and to verify the output in the ARM7
Write a program to interface Stepper motor with ARM7

Write a program for interfacing of DC motor with ARM7

Write a program to study and characteristics of the programmable gain amplifier (PGA)
Write a Program realization of low pass, high pass and band pass filters and their
characteristics

9. Write a program to interface ADC and DAC with PSOC

92 ROV b L0 S, =

f &,@,‘Ja,{;;‘;w{ $ s 5 6-d3 /aufﬁ@ﬁ%&
2\ T PEgEe fsd OF, owd-prd RvaieeE, wee, SaR Ry, "N

Khwaja Moinuddin Chishti Urdu, Arabi-Farsi University, Lucknow, Uttar Pradesh, India

U.P. STATE GOVERNMENT UNIVERSITY
(Recognised U/S 2(f) & 12 (B) of the UGC Act 1956 & B.Tech. approved by AICTE)

FACULTY OF ENGINEERING & TECHNOLOGY

COMPUTER SCIENCE & ENGINEERING
with. Specialization using AI & ML

Curriculum Structure

A\
(ThirdYear- VI Semester)

[Effective from Session 2021-22] %

STUDY & EVALUATION SCHEME
B.Tech. (CSE specialization with AI&ML)

III Year: VI Semester

S.No. Subject Subject name Sessionsl Subject Credit
code L|T] P |[msT]| TA | Total | SEE | Total
THEORY SUBJECT
i ACS601 |Computer 31 0 0 15 | 15 | 306 |70 100 3
Networks
2 ACS602 |Compiler Design 300 0 15, 115] 30 | 70 100 4
ACS603 |Neural Network & | 3 | 1 0 15 |15 | 30 | 70 100 4
= Deep Learning
ACS604 |Speech and Natural | 3 | 0 0 15, 4 154 30|70 100 3
4 Language
Processing
ACS061 -|Elective -1 3160 0 15 1 15 1 30} 70 100 3
5
064
6 . |asgpy - |hBmcEnZ 2o o | 15]15| 30 [7] 100 | 2
Economics
7 GP601 |General Proficiency - - - - - 50 0 50 0
PRACTICAL/DESIGN/DRAWING
¥ f:;“ ki ol B (60 SN E I I R T 1
8 ACS652 |Compiler Design g 1g 5 15 | 15| 30 70 100 1
Lab
9 ACS653 |Project - 1 0| O 6 0 |[100] 100 | O 200 3
Total 17| 2] 10 ' 1000 | 24

Student has to undergo a summer training of 45 days at the end of VI Sem.

L- Lecture
T -Tutorial
P-Practical

MST- Mid Semester Test
TA-Teacher's Assessment

SEE- Semester End Exa

mination

s
IS

COMPUTER NETWORKS
(ACS601)

Objective: The objective of this course is to provide basic exposure to computer
networks theory and implementations.

Unit Topic

I Introduction: Networks, Internet, Network Components, Network Categories,
Applications of Computer Networks

Reference Models: Concept of Layering, OSI Model, TCP/IP Protocol Suite,
Functions of Layers

Physical Layer: Transmission Mode, Physical Topology, Multiplexing,
Transmission Media, Switching

I |Data Link Layer: Design Issues, Error Detection and Correction Techniques,
Elementary Data Link Protocols, Sliding Window Protocols, Multiple Access
Protocols, Ethernet, Connecting Devices

III | Network Layer: Logical addressing, IPv4 Addresses, NAT, IPv6 Addresses,
Internet Protocol, IPv4, IPv6, Internetworking, Internet Control Protocols,
Routing Algorithms, Distance Vector Routing, Link State Routing, Routing in
the Internet

IV [Transport Layer: Process-to-Process Delivery, Transport Layer Protocols,
UDP, User Datagram, TCP, TCP Segment, TCP Connection, Flow Control and
Error Control, TCP Transmission Policy, Principles of Congestion Control,
TCP Congestion Control, Quality of Service.

V |Application Layer: Principles of Network Applications, WWW and HTTP,
Non-Persistent and Persistent Connections, Cookies, Web Caching, File
Transfer, Remote Logging, Electronic Mail in the Internet, Domain Name
System, Security: Introduction, Cryptography and Cryptanalysis, Public Key|
Cryptography Algorithms, RSA Algorithm, DES, Authentication and
IAuthorization

References:
1. AS Tanenbaum, DJ Wetherall, Computer Networks, Prentice-Hall, 2010.
2. LL Peterson, BS Davie, Computer Networks: A Systéms Approach, Morgan-Kauffman,
2011,
3. W Stallings, Cryptography and Network Secutity, Principles and Practice, Prentice-Hall,
2005.

COMILER DESIGN
(ACS602)

Objective: Students will have a fair understanding of some standard passes in aj
general-purpose compiler.

Unit Topic

I Introduction to Compiler: Phases and passes, Bootstrapping, Finite state
machines and regular expressions and their applications to lexical analysis,
implementation of lexical analyzers,, LEX-compiler, Formal grammars and
their application to syntax analysis,, ambiguity, The syntactic specification of
programming languages: Context free grammars, derivation and parse trees,
capabilitiesof CFG.

II [Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence
parsing, top down parsing, predictive parsers Automatic Construction of]
efficient Parsers: LR parsers, the canonical Collection of LR(0) items,
constructing SLR parsing tables, constructing Canonical LR parsing tables,
Constructing LALR parsing tables, using ambiguous grammars, an automatic
parser generator, YACC tool.

III Syntax-directed Translation: Syntax-directed Translation schemes,
Intermediate code, postfix notation, Parse trees & syntax trees, three address
code, quadruple & triples, Translation of simple statements and control flow
statements, Type checking, Type conversions, Equivalence of type expressions,
Overloading of functions and operations.

IV Symbol Tables: Data structure for symbols tables, representing scope]
information.

Run-TimeAdministration: Implementation of simple stack allocation
scheme, storage allocation in block structured language. Error Detection &
Recovery: Lexical Phase errors, syntactic phase errors semantic errors.

V |Code Generation: Design Issues, the Target Language. Addresses in the Target
Code, Basic Blocks and Flow Graphs, Opti' ization of Basic Blocks, Code
Generator. Code optimization: Machine-Independent Optimizations, Loop
optimization, DAG representation of basic blogks, value numbers and algebraic|

laws, Global Data-Flow analysis.
References: T/

1. K.D. Cooper, and Linda Torczon, Engineering a Compiler, Morgan Kaufmann, 2011.
2, K.C. Louden, Compiler Construction: Principles and Practice, Cengage Learning, 1997.
3. D. Brown, J. Levine, and T. Mason, LEX and YACC, OUReilly Media, {992.

NEURAL NETWORK AND DEEP LEARNING

(ACS603)
Objective: To teach fundamentals of neuro computing with applications to computer
engineering problems.

Unit Topic

I Introduction: Neural Network, Human Brain, Biological and Artificial Neurons,
Model of Neuron Knowledge Representation, Artificial Intelligence and Neural
Network, Network Architecture, Basic Approach of the working of ANN-
Training, Learning and Generalization.

I |Supervised Learning: Single Layer Networks, Perception- Linear Separability,
Limitations of Multi Layer Network Architecture, Back Propagation Algorithm
(BPA) and Other Training Algorithms.

Il |Application of Adaptive Multi- Layer Network Architecture, Recurrent
Network, Feed-Forword Networks Radial-Basic-Function (RBF) Networks.

IV |Unsupervised Learning: Winner- Task-All Networks, Hamming Networks,
Maxnet, Simple Competitive Learning Vector- Quantization, Counter-
Propoagation Network, Adaptive Resonance Theory, Kohonen(ls Self]
Organizing Maps, Principal Component Analysis.

V [Introduction To Deep Learning, Deep Learning Models, Restricted Boltzmann
Machines, Deep Belief Nets, Convolution Networks, Recurrent Nets, Deep
Learning Platforms

References:

1. Simon Haykin,”Neural Network — A Comprehensive Foundation[], Macmillan Pub.1994,

2. K.Mahrotra, C.K. Mohan and Sanjay Ranka, Elements of Artifical Neural Network, MIT
Press, 1997.

3. J.M. Zurada,” Introduction to Artificial Neural network”, Jaico Publihers, 2012.

4. Limin Fu. “Neural Networks in Computer Intelligence”, TMH, 2005.

b o

SPEECH AND NATURAL LANGUAGE PROCESSING
(ACS604)

Objective: To teach how to design, code, debug and document programs using
techniques of good programming style.

Unit

Topic

I

Introduction to Natural Language Understanding: The study of Language,
Applications of NLP, Evaluating Language Understanding Systems, Different
levels of Language Analysis, Representations and Understanding, Organization|
of Natural language Understanding Systems, Linguistic Background: An outling
of English syntax.

II

Introduction to semantics and knowledge representation, Some applications like
imachine translation, database interface.

111

Grammars and Parsing: Grammars and sentence Structure, Top-Down and
Bottom-Up Parsers, Transition Network Grammars, Top-Down Chart Parsing.
Feature Systems and Augmented Grammars: Basic Feature system for English,
Morphological Analysis and the Lexicon, Parsing with Features, Augmented
Transition Networks.

v

Grammars for Natural Language: Auxiliary Verbs and Verb Phrases, Movement]
Phenomenon in Language, Handling questions in Context-Free Grammars.
Human preferences in Parsing, Encoding uncertainty, Deterministic Parser.

Ambiguity Resolution: Statistical Methods, Probabilistic Language Processing,
Estimating Probabilities, Part-of-Speech tagging, Obtaining Lexical
Probabilities, Probabilistic Context-Free Grammars, Best First Parsing.
Semantics and Logical Form, Word senses and Ambiguity, Encoding Ambiguity

in Logical Form.

References:

1. Akshar Bharti, Vineet Chaitanya and Rajeev Sanga
PHI, 1994.

“NLP: A Paninian Perspective”,

2. James Allen “Natural Language Understanding” Pearson, 1994 .

b

COMPUTER NETWORKS LAB
(ACS651)

LIST OF EXPERIMENTS

To learn basics of the packet tracer simulator tool.
Write a program in C to implement bit stuffing and character stuffing.
To connect the computers in Local Area Network and to detect collision of packets.

To configure DHCP and DNS server for a given network in packet tracer simulator tool.

MY N =

Write a C program to get the MAC or Physical address of the system using ARP

(Address Resolution Protocol) and to subnet a given network according to the

requirements in packet tracer simulator tool. .

6. To configure router using command line. Also observe the datagram formats in packet
tracer simulator tool.

7. To configure NAT for a given network in packet tracer simulator tool.

8. Write a program to implement TCP & UDP Sockets.

9. Write a C program to transmit a character, a string and a file from one computer to

another using RS-232 cable and to configure static routing in packet tracer simulator tool.

10. To configure dynamic routing protocols in packet tracer simulator tool.

COMILER DESIGN LAB
(ACS652)

LIST OF EXPERIMENTS

1. Write a program to check whether a string belongs to the grammar or not.

2. Practice of Lex of Compiler writing.

3. Write a LEX program to count number of printf and scanf from a given ¢ program file
and replace them with write and read respectively.

Write a program to check whether a grammar is left recursive and remove left recursion.
Write a program to remove left factoring

Write a program to compute FIRST and FOLLOW of non-terminals.

Write a program to check whether a grammar is Operator precedent. .

Practice of Yacc of Compiler writing.

© o ® N e

Write a YACC program to recognize the grammer|[a"b/n>0] . Test whether the following
string belongs to this grammer.

10. Write a YACC & LEX program to identify valid if and if-else statement.

Job i

Project -1
(ACS653)

The object of Project Work I is to enable the student to take up investigative study in the broad
field of Computer Science & Engineering, either fully theoretical/practical or involving both
theoretical and practical work to be assigned by the Department on an individual basis or
two/three students in a group, under the guidance of a Supervisor. This is expected to provide a
good initiation for the student(s) in R&D work. The assignment to normally include:

1) Survey and study of published literature on the assigned topic;

2) Working out a preliminary Approach to the Problem relating to the assigned topic;

3) Conducting preliminary

4) Analysis/Modeling/Simulation/Experiment/Design/Feasibility;

5) Preparing a Written Report on the Study conducted for presentation to the

6) Department;

7) Final Seminar, as oral Presentation before a Departmental Committee.

MV/W

