

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Detail Syllabus of

B.Sc. II Year

or

Diploma in Microbial Technology

Programme	/Class: Diploma	Year: Second		Semester: Third		
Subject: MI	CROBIOLOGY					
Course Cod	le: B080301T	Course Title: Basic B	Biochemistry	y and Microbial Physiology		
Course Out	comes:			Bloom's Taxonomy		
		ding of the basic properties	rinciples of	K1, K3		
 thermodynamics applied to biological systems CO2- Will be conversant with the structures of carbohydrates, 						
• CO2- Will be conversant with the structures of carbohydrates, lipids, proteins and nucleic acids			K2, K4			
		e basic concepts of	enzyme			
		me kinetics, and will		K3, K5		
	•	enzymes found in livi				
• CO4-	Will be acquaint	ed with the dive	rse	V2 V6		
physiol		bacteria/archaea a	and	K3, K6		
	al transportsystems.					
	*	knowledge of patter		K2, K4		
		owth curve, calculation growth rate, and effe		,		
_	ironment on growth.	growth rate, and ene	Ct OI			
		biochemical pathway	vs are			
		generation and conser		K3, K5		
_		nder aerobic and ana	erobic			
condition						
		h the physiology of		K4, K6		
		inorganic nitrogen by ons between microbe		111, 110		
	ment affect cellular pl		s and the			
Credits: 4	mont affect contain pr	ijsiologj.	Core: Co	mpulsory		
Max. Marks	s: 25+75			sing marks: as per rules		
Total No. of	Lectures-Tutorials-Pr	actical (in hours per w				
Unit		Topi	cs		Total No.	
					of Lectures/	
					Hours (60)	
I		odynamics and bioen	_	. 6 . 1 1	6	
				ncept of enthalpy, entropy,		
		_	-	equilibrium constant and		
	spontaneous reactions and coupled reactions					
II	Water & Carbohyd				12	
	Structure and properties of water, Handerson Hasselbalch equation, Ionic					
	product of water, pH and buffers.					
	Structure & classification of carbohydrates, carbohydrates metabolism:					
			-	(PPP), Entner Doudoroff		
	*	le, Electron transport				
	hypothesis, oxidative	phosphorylation and	ATP genera	ntion, Gluconeogenesis		

III	Proteins	6
	Structure & Classification- Protein structure: primary, secondary- peptide unit salient features, α helix, β sheet, β turn, tertiary and quaternary-human	
	hemoglobin as an example. Forces involved in protein folding	
	nomogracim us un example. I orees involves in protein folding	
IV	Lipids & Nucleic acids	6
	Structure and classification of lipids. Metabolism of lipids- Alpha and beta	
	oxidation of lipids; Nucleic acids Structures, Double helical structure of DNA. Types of DNA: A, B, Z. Physic-chemical properties of DNA. RNA types-	
	rRNA, mRNA, tRNA.	
V	Enzymology concepts:	6
	Concepts of holozymes, apoenzyme, cofactors, prosthetic group, coenzyme,	
	metal cofactors; Classification of enzymes; Active site and activation energy;	
	Lock and key hypothesis, induced fit hypothesis; enzyme kinetics; Allosteric	
	enzymes-cooperativity; Enzyme inhibition: competitive and noncompetitive	
VI	Microbial nutrient uptake and transport:	8
	Microbial classification based on nutrient and energy source; Nutrient uptake	
	mechanisms-passive and facilitated diffusion; Primary and secondary active	
	transport; Concept of uniport, symport, antiport, group translocation; Iron	
	uptake	
VII	Microbial growth and effect of environmental factors on growth	8
	Bacterial growth curve and kinetics-Generation time and specific growth rate;	
	Diauxic growth and synchronous growth; Batch, Fed batch and continuous	
	cultures; Chemostat and turbidostat	
VIII	Stress physiology and Nitrogen metabolism	8
	Effect of oxygen, pH, osmotic pressure, heat shock on bacteria; Microbial	
	adaptation to Environment-Temperature, pH, Oxygen, Pressure, Salt, Water	
	activity; Extremophiles application in industry; Dissimilatory nitrate reduction,	
	Nitrogen fixation	

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Suggested Readings:

- 1. Moat A.G., Foster J.W. and Spector M.P. 2002. *Microbial Physiology*, 4th edition. A Johan Wiley and sons inc., publication.
- 2. Kim B.H. and Gadd G.M. 2008. *Bacterial physiology and metabolism*. Cambridge University Press, Cambridge.
- 3. Gilbert H.F. 2000. *Basic concepts in biochemistry: A student's survival guide*. Second Edition. Mc-Graw-Hill Companies, health professions Division, New York.
- 4. Madigan M.T., Martinko J.M., Stahl D.A. and Calrk D.P. 2012. *Brock Biology of Microorganisms*. 13th ed. Pearson Education Inc.
- 5. Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr., Lubert Stryer.2015. Biochemistry 8th edition. W. H. Freeman.
- 6. Suggestive digital platforms web links-
 - https://lipidnanostructuresgroup.weebly.com
 - https://www.labster.com/microbiology-virtual-labs
 - https://www.microbiologybook.org
 - https://www.cpe.rutgers.edu/courses/current/lf0401wa.html
 - https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microscopy
 - https://www.futurelearn.com/courses/introduction-to-microbiology

This course can be opted as an elective by the students of following subjects: Open for all

Course prerequisites: To study this course, a student must have had the subject "Agriculture and Environmental Microbiology" in II Semester of certificate course in Microbial Technology

Suggested Continuous Evaluation Methods

House Examination/Test:10 marks

Written Assignment/Presentation/Project/Research Orientation/Term papers/Seminar: 10 Marks

Classperformance/Participate: 5Marks

Further Suggestions: None

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Programm	e/Class: Diploma	Year: Second		Semo	ester: Third	
	ICROBIOLOGY					
Course Co	de: B 080302P	Course Title: Exper	iments in B	asic Bi	ochemistry and Micr	obial Physiology
Course Ou	tcomes:				Bloom's taxor	nomy
	- Understand the struct			ain	K1, K3	
	erties, as well as condu	ct chemical tests todet	ect their			
	ence in samples.		C1			
	- Would have acquired			cal	K4, K5	
	niques for proteins and crophotometer.	will be familiar withth	ie use of a			
		mental principles of e	nzvme		K2,K6	
	• CO3- Understand the fundamental principles of enzyme biochemistry, including enzyme kinetics, at the end of the					
cours	•	yme kineties, at the cr	ia oraic			
	- Will have a thorough	understanding of bact	erial growth	1	K3, K5	
patte	rns, bacterial growth cu	rves, generation time	and basic gr	rowth	- , -	
	calculations, and the im			h.		
	• CO5- Will learn about the fermentation process in microbes. K1, K3					
Credits: 2 Core: Compulsory						
Max. Mark					arks: as per rules	
	al No. of Lectures-Tutorials-Practical(in hours per week):L-T-P:0-0-2					1
S. No.		Objecti	ives			Total No. of
						Lectures/ Hours (60)
1	Use and calibration of				•	4
	and working solutions	. Handling of pipettes	and microp	ipettes	and checking their	
	accuracy.					
2	Qualitative tests	1	· D 11			20
	Carbohydrates: Molis					
	Amino acids and Prote	•		•	•	
	Lipids: Solubility Tes	t, Translucent Spot Te	st, Emulsifi	cation	1 est.	
3	Quantitative estimation	on of carbohydrata	hy anthron	a mati	hod. Quantitative	10
	estimation of proteins		oy anunon		nou. Quaninanve	10
	Determination of the a					
	Determination of the a	icia varue or a rat				
4	Amylase production,	amylase production, H ₂ S production, Urease production test, IMViC test				
5	Effect of temperature on microbial growth.	and pH on growth of	E. coli, Effe	ect of c	earbon and nitrogen	8
6	Demonstration of car oxidase test.	bohydrate fermentation	on, indole	produc	ction, catalase test,	8

Suggested readings:

- 1. Daniel M. Bollag, Stuart J. Edelstein, Protein Methods, Volume 1, 1991, Wiley.
- 2. S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry, 2000, Narosa.
- 3. Sambrook J and Russell DW., Molecular Cloning: A Laboratory Manual. 4th Edition, 2004, Cold Spring Harbour Laboratory press.
- 4. Maloy SR, Cronan JE and Friefelder D, Microbial Genetics 2nd EDITION., 2004, Jones and Barlett Publishers
- 5. Larry Snyder. Molecular Genetics of Bacteria: 3rd (third) Edition.
- 6. Digital links
 - http://www.mooc.list.com/tag/molecular-biology
 - http://www.mooc.list.com/course/microbiology.sayloro

•	https://lipidnanostructuresgroup.weely.com
•	http://www.mooc.list.com/microbial
•	https://open.umn.edu/opentextbooks/textbooks/biochemistry-free-for-all-ahern
This course ca	an be opted as an elective by the students of following subjects: Open for all
Course prere	quisites: To study this course, a student must have had the subject "Agriculture and Environmental
Microbiology'	"in II Semester of certificate course in Microbial Technology
Suggested Co	ontinuous Evaluation Methods
Further Sugg	gestions: None

U.P. STATE GOVERNMENT UNIVERSITY,
(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

FACULTY OF SCIENCE

KHWAJA MOINUDDIN CHISTI LANGUAGE UNIVERSITY, LUCKNOW, U.P. (India)

B.Sc. - Microbiology (2nd Year, Semester-III or IV)

Generic Elective-3 or 4 (GE-3/4)/Minor Elective-3 or 4

Minor Microbiology-3 or 4

Microbial ecology and Bio control by Microorganism

Effective from Session 2022-23

	Programme/Class: Certificate Year: Second Semester: Third or Fourth					1
Subject: Mic						
Course Code	e: B080203T	Course Title: Microb	oial ecology	and Bio co	ntrol by Microor	ganism
Course Outo					Bloom's 1	taxonomy
• CO1	 Get acquainted with 	natural habitats of dive	erse protect	tion.	K1, K4	
• CO2	- Understand how mi	crobes interact among	themselves	and with	K2, K4	
highe	er plants and animals	with the helpof variou	s examples			
	Tiz, Tiz					
_	geochemical cycling of essential elementsoccurring within an					
	ystem and its significa					
	 Gain in depth knowler and their manageme 	ledge of different types nt.	of solid wa	aste, liquid	K3, K5	
		oblems of pollution and	d applicatio	ns of clear	K3, K6	
	chnologies for the pol	lutants.	OF 2	101:		
Credits: 4 Max. Marks	. 25 . 75				ective-3 and 4	
		actical(in hours per wee			as per rules	
Unit	Lestares Tutoriais-116	Topics				Total No. of
		Topics				
I	Interaction of Micro	organisms				15
	-	ive interaction- Mutu	-	_		
	*	ensalism, Parasitism,		•	organism of	
	•	plane and phyllopla	ane, myc	orrhiza (t <u>y</u>	ypes and its	
	applications).					
П	degradation of cellul Nitrogen fixation, ar reduction, Phosphor	(Biogeochemical cycle lose, hemicellulase, lig mmonification, nitrifications cycle- Phosphate lobes involved in sulpho	nin and chi ation, denita Immobilisa	tin; Nitroge rification an	n cycle- d nitrate	15
III	Biodegradation and	Bioremediation				15
	* *	ation -microbial biorem		•		
		ypes of reaction in bior			-	
		ation-Biotic or biologic				
		rs, Biodegradation of	hydrocarb	ons, pesticio	des and	
	herbicides					
IV	Sewage/Waste Wate		c 1	, .	C 1: 1	15
	-	ment: Source and type				
		g and sanitary landfill)	_	_		
	-	ength of sewage (BOD		_		
	•	on pond, trickling filt				
	-	ogical treatment, Waste	e water trea	tment of so	me industry,	
	water recycling					

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Suggested Readings:

- 1. Alexander M., Introduction to soil microbiology, Wiley Eastern limited, New Delhi.
- 2. Alexopoulas C.J. and MIMS C.W., Introductory Mycology, New age international, New Delhi.
- 3. Aneja K.R., Experiments in Microbiology, plant pathology, Tissue culture and Mushroom cultivation, New Age International, New Delhi
- 4. Hurst, C.J., Environmental Microbiology, ASM press, Washington D.C.
- 5. Mehrotra A.S., Plant Pathology, Tata Mcgraw Hill Publications limited, New Delhi.
- 6. Pelczar M.J., Chan E.C.S and Kreig N.R., Microbiology, Mcgraw-Hill Book Company, New York.
- 7. Prescott Lansing M., Harley John P. and Klein Donald A., Microbiology, WCB Mcgraw- Hill, New York.
- 8. Salle A.J., Fundamental Principles of Bacteriology, Tata Mcgraw-Hill Publishing Company Limited, New Delhi.
- 9. Stacey R.H. and Evans H.J., Biological Nitrogen Fixation, Chapman and Hall limited, London.
- 10. Stanier R.Y., Ingraham J.L., General Microbiology, Prentice Hall of India Private Limited, New Delhi.
- 11. Subbarao N.S., Soil Microroganisms and Plant Growth, Oxford and IBH Publishing Company, New Delhi.

This course can be opted as an elective by the students of following subjects: Open for all The eligibility for this paper is 10+2 with any subject

Suggested Continuous Evaluation Methods: • Seminar/ Presentation on any topic of the above syllabus • Test with multiple choice questions/ short and long answer questions Attendance

Course prerequisites: To study this course, a student must have had the subject ALL in class12th. The eligibility for this paper is 10+2 with any subject

Further Suggestions: It widens the scope for students to join Government and Non-Government organization upskilling the people at different levels as per their socio-economic structure

At the End of the whole syllabus any remarks/ suggestions:

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

FACULTY OF SCIENCE

KHWAJA MOINUDDIN CHISTI LANGUAGE UNIVERSITY, LUCKNOW, U.P. (India)

B.Sc. - Microbiology (2nd Year, Semester-III)

(SEC-3)/Vocational Course-3

Microbial production of Antibiotics and Organic Acids

Effective from Session 2023-2024

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Course Code: B080303T Course Title: Microbial production of Antibiotics and Organic Acids		/Class: Certificate	Year: Second		Semester	: Third		
Course Outcomes: CO1- Upon completion the students will learn about the role of Microorganism in protection. CO2- Assimilate knowledge about Microbial Examination of secondary metabolites. CO3- Learn about fermentation techniques. CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid, Production process for gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
CO1- Upon completion the students will learn about the role of Microorganism in protection. CO2- Assimilate knowledge about Microbial Examination of secondary metabolites. CO3- Learn about fermentation techniques. CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 SEC-3/Vocational Course-3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Total No. Lectures/ Unit & Hours (45) I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid, Production of gluconic acid, Application of gluconic acid, Acetic acid- Microorganism used for	Course Cod	e: B080303T	Course Title: Micro	obial produc	ction of Ar	ntibiotics and O	rganic Acids	,
Microorganism in protection. CO2- Assimilate knowledge about Microbial Examination of secondary metabolites. CO3- Learn about fermentation techniques. CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Total No. (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production acid, Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	Course Out	comes:				Bloom's t	axonomy	
CO2- Assimilate knowledge about Microbial Examination of secondary metabolites. CO3- Learn about fermentation techniques. CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for				out the role o	of	K1, K3		
e CO3- Learn about fermentation techniques. CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. SEC-3/Vocational Course-3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Total No. Lectures/ Unit & Hours (45) I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin, Recovery of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
• CO3- Learn about fermentation techniques. • CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin, production, Biosynthesis of penicillin, Production process of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid, Production of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for			ge about Microbial Exa	mination of	secondary	K4, K5		
• CO4- Will get sufficient knowledge regarding analysis of antibiotic and acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for			ation tochniques			V2 V6		
acids. Credits: 3 Max. Marks: 40+60 Min. Passing marks: as per rules Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Total No. Lectures/ Unit & Hours (45) I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for				alvois of anti	hiotic and	· · · · · · · · · · · · · · · · · · ·		
SEC-3/Vocational Course-3		•	lowledge regarding and	arysis or anu	biotic and	K3, K3		
Max. Marks: 40+60 Min. Passing marks: as per rules		·		SEC-3/Voc	cational Co	ourse-3		
Total No. of Lectures- Tutorials- Practical (in hours per week): L-T-P:3-0-0 Unit Topics Total No. Lectures/ Unit & Hours (45) I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for		s: 40+60						
Lectures/ Unit & Hours (45) I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	Total No. of	Lectures- Tutorials- F	Practical (in hours per v					
I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	Unit		Topic	es			Total No.	of
I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for			•					
I Antibiotics (General)- History of antibiotics discovery, Wide range of antibiotics (Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
(Broad spectrum and narrow spectrum antibiotics), Microorganism producing antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
antibiotics, Application of antibiotics (Antitumor, food preservative, antibiotics used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	Ι	· ·	•	•		•		
used in animal feed and veterinary medicine, control of plant diseases, tools in molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
molecular biology) II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
II Production of Antibiotics-Penicillins, Action of penicillins, Organism for penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for			and veterinary medic	cine, control	or plant d	iseases, tools in		
penicillin production, Biosynthesis of penicillin, Production process of penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	TT		tibiotics-Penicillins A	Action of n	enicillins	Organism for	15	
penicillin, Recovery of penicillin, Recovery of 6- amino penicillanic acid III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for							15	
III Citric Acid- Application of citric acid, Microbial strains for citric acid production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for								
production, Microbial biosynthesis of citric acid, Factors in the regulation of citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic acid, Production process for gluconic acid, Acetic acid- Microorganism used for	TIT		*	<u> </u>	•		8	
citric acid production IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic 7 acid, Production process for gluconic acid, Acetic acid- Microorganism used for		* *					Ü	
IV Gluconic acid- Application of gluconic acid, Microbial production of gluconic 7 acid, Production process for gluconic acid, Acetic acid- Microorganism used for		_						
acid, Production process for gluconic acid, Acetic acid- Microorganism used for		citic acid production	/II					
	IV	Gluconic acid- App	olication of gluconic a	cid, Microbi	al producti	ion of gluconic	7	
		acid, Production pro	ocess for gluconic acid	, Acetic acid	- Microorg	ganism used for		
production, Production process for acetic acid, Production of vinegar		production, Product	ion process for acetic a	acid, Product	ion of vine	egar		

Suggested Readings:

- 1. Adams & Moss, Food Microbiology, Published by Royal Society of Chemistry, Cambridge, U.K.
- 2. R.S. Mehrotra Plant Pathology, Tata Mc-Graw Hill
- 3. Frazier & Westhoff., Food Microbiology Tata Mc-Graw Hill (2014)
- 4. Varnam A.H. & Evans M G Food borne pathogens. Wolfe Publishing House, London
- 5. B.D. Singh (2015) Biotechnology, Kalyani Publisher
- 6. Prajapati (2007) Fundamentals of Dairy microbiology, Indian Council of Agricultural Research, NewDelhi
- 7. Andrew Proctor (2011) Alternatives to conventional food processing. RSC Publisher
- 8. Arun K. Bhunia & Bibek Ray, Fundamental Food Microbiology, 5th Ed., CRC Press

This course can be opted as an elective by the students of following subjects: Open for all The eligibility for this paper is 10+2 with any subject
Suggested Continuous Evaluation Methods: • Seminar/ Presentation on any topic of the above syllabus • Test with multiple choice questions/ short and long answer questions Attendance
Course prerequisites: To study this course, a student must have had the subject ALL in class12th. The eligibility for this paper is 10+2 with any subject
Further Suggestions: It widens the scope for students to join Government and Non-Government organization upskilling the people at different levels as per their socio-economic structure.
At the End of the whole syllabus any remarks/ suggestions:

	ne/Class: Diploma	Year: Second		Seme	ster: Fourth		
	IICROBIOLOGY						
Course Co	de: B080401T	Course T	itle: Molecu	lar Biol	ogy and Microbial	Genetics	
Course Ou					Bloom's taxono	omy	
		otic cellular structure		nal	K2, K3		
		as the dissimilaritiesi					
		yotes and eukaryotes.		•	17.4 17.5		
		on, transmission, and a cromosomal genesand		ınısms	K4, K5		
		guish genetic regulator		ns at	K2,K5		
	s levels	dish genetic regulator	y meenamsn	15 41	1,13		
		g of how internal and	d external si	gnals	K3,K5		
		ofluence microbialdive			-, -		
microl	bial communities and	their environments.					
	•	s that lead to mutation	s and other g	genetic	K4,K6		
change Credits:4	es.			1			
Max. Marl	Iza. 25 75		Core: Co		ry arks: as per rules		
		ractical(in hours per v			irks. as per rules		
Unit	T Lectures-1 dtorrais-1	Top	•	•4-0-0		Total No.	
CIII		100	ics			Lectures/	
						Hours (60)	
I		enome organization –				6	
		genetic material, DNA double helix structure salient DNA. RNA Structure. Denaturation and renaturation, cot gy: linking number, topoisomerases. DNA organization in					
	prokaryotes, viruses		topoisomeras	ses. DN	A organization in		
II		n Prokaryotes and E	ukarvotes-			6	
		inidirectional replicat		nservati	ive and semi-		
		ation. Mechanism of DNA replication, Replication of					
	chromosome ends.						
III	-	rokaryotes and Euka	=			8	
	_	ption unit. General tra			-		
	•	Transcriptional modi	fication in	eukary	otes, Aternative		
	splicing mechanism					_	
IV	-	karyotes and eukary				8	
		, tRNA structure and j					
	•	and eukaryotes, Gene	etic code, Wo	obble hy	pothesis, Fidelity		
	of translation			_			
\mathbf{V}	V Regulation of gene expression in prokaryotes and eukaryotes Overview of regulation of gene expression, Regulation of gene expression by				10		
		•		_	•		
	•	histone acetylation a		-			
	_	ol mechanisms, Induc	_	Systen	n, Kepressible		
	Operon System, Tra	peron System, Translation control mechanisms.					

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

VI	Plasmids in prokaryotes and eukaryotes Plasmid replication and partitioning, host range, plasmid incompatibility, plasmid amplification, regulation of plasmid copy number, curing of plasmids. Types of plasmids.	6
VII	Bacterial gene exchange processes- Mechanisms of Genetic Exchange, Horizontal gene transfer, Transformation;	8
	Conjugation; Transduction, Complementation.	
VIII	Mutations, mutagenesis and repair Types of mutations, Physical and chemical mutagens. Loss and gain of function mutants. Reversion and suppression, Uses of mutations. Ames Test, DNA repair mechanism	8

Suggested Readings:

- 1. Watson, J. et. Al. 2004. Molecular Biology of the Gene,5th Edition, CSHL Press, New York.
- 2. Conn, E., & Stumpf, P. 2009. Outlines of Biochemistry, 5Th Ed. Wiley India Pvt. Limited.
- 3. T A Brown.2001. Essential Molecular Biology. Oxford University Press, USA
- 4. Brock, T.D. 1990. The Emergence of Bacterial Genetics, Cold Spring Harbor Lab Press.
- 5. Ptashne, M. 2002. Genes and Signals, Cold Spring Harbor Laboratory Press.
- 6. Miller, J.R. 1992. A Short Course in Bacterial Genetics: Lab Manual, Cold Spring Harbor Laboratory Press
- 7. Suggestive digital platforms web links-
 - https://www.classcentral.com/tag/microbiology
 - http://www.mooc.list.com/tag/molecular-biology
 - http://www.mooc.list.com/course/microbiology.sayloro
 - https://lipidnanostructuresgroup.weelv.com
 - http://www.mooc.list.com/microbial
 - https://open.umn.edu/opentextbooks/textbooks/biochemistry-free-for-all-ahern

This course can be opted as an elective by the students of following subjects: Open for all

Course prerequisites: To study this course, a student must have had the subject "Basic Biochemistry and Microbial Physiology" in III Semester of Diploma course in Microbial Technology

Suggested Continuous Evaluation Methods

House Examination/Test: 10 marks

Written Assignment/Presentation/Project/Research Orientation/Term papers/Seminar: 10 marks

Class performance/Participate: 5Marks

Further Suggestions: None

Progr Diploma	ramme/ Class:	Year: Second	Semester: Fourth		
	CROBIOLOGY				
	le: B080402P	Course Title: Experiment in Mo	lecular Biology and Microb	ial Genetics	
Course Out		*	Bloom's taxonomy		
	- Understand the fund ic research.	lamentals of molecular biology and	·		
• CO2-	- Use some basic equi	pment in a molecular biology	K4, K5		
• CO3-		VA from microbes using molecular	K2,K4		
	gy techniques Measure DNA and a	verify purity using UV spectrometer	K3, K5		
and e	lectrophoresis.		,		
	 Understand the basic conformations using 	c principle of plasmid isolation and electrophoresis.	K1, K3		
• CO6- physi effect	- Understand the muta	agenic effect of chemical and m test to identify mutagenic	K3, K6		
Credits:2		Core: Co			
Max. Mark			sing marks: as per rules		
	Lectures-Tutorials-P	ractical (in hours per week): L-T-P	:0-0-2	T	
S. No.		Objectives		Total No. of Lectures/ Hours (60)	
1	Isolation of genor electrophoresis.	mic DNA from E. coli and a	nalysis by agarose gel	8	
2	Estimation of DNA	using diphenylamine reagent.		8	
3	•	Resolution of proteins by polyacrylamide gel electrophoresis (SDS-PAGE) and visualization using coomassie dye.			
4	Replica plating met Isolation of Histidia	10			
5		Isolation of plasmid DNA from <i>E. coli</i> . Study the different conformations of plasmid DNA through agarose gel electrophoresis			
6		of chemical (nitrous acid) and pl	nysical (UV) mutagens on	8	
7	Demonstration of A	ames test.		8	

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Suggested readings:

- 1. Michael Wink, An Introduction to Molecular Biotechnology (2nd), 2012. ISBN: 9783527326372, TX Wiley-Blackwell.
- 2. Seidman & Moore, Basic Laboratory Methods for Biotechnology: Textbook & Laboratory Reference, 2nd edition. 2009. Prentice Hall. ISBN: 0321570146.
- 3. Sambrook J and Russell DW., Molecular Cloning: A Laboratory Manual. 4th Edition, 2004, Cold Spring Harbour Laboratory press.
- 4. Digital links:
 - https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ames-test

<u>test</u>
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846332/
This course can be opted as an elective by the students of following subjects: Open for all
Course prerequisites: To study this course, a student must have had the subject "Basic Biochemistry and
Microbial Physiology" in III Semester of Diploma course in Microbial Technology.
Suggested Continuous Evaluation Methods
Suggested Continuous Evaluation Methods
Further Suggestions: None

U.P. STATE GOVERNMENT UNIVERSITY,
(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

FACULTY OF SCIENCE

KHWAJA MOINUDDIN CHISTI LANGUAGE UNIVERSITY, LUCKNOW, U.P. (India)

B.Sc. - Microbiology (2nd Year, Semester-III or IV)

Generic Elective-3 or 4 (GE-3/4)/Minor Elective-3 or 4

Minor Microbiology-3 or 4

Microbial ecology and Bio control by Microorganism

Effective from Session 2022-23

U.P. STATE GOVERNMENT UNIVERSITY,
(Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Programme/	/Class: Certificate	Year: Second		Semester	r: Third or Fourth	l	
Subject: Mic							
Course Code	e: B080203T	Course Title: Microb	oial ecology	and Bio c	ontrol by Microor	ganism	
Course Outo	comes:				Bloom's ta	ixonomy	
		natural habitats of dive	_		K1, K4		
		crobes interact among			K2, K4		
		mals with the helpof v		_			
		he important role micr			K2,K5		
•	•	ssential elementsoccuri	ring within	an			
<u>-</u>	ystem and its significa		C 1: 1	4	1/2 1/5		
	- Gain in depth knowld waste and their man	edge of different types	of solid wa	iste,	K3, K5		
		oblems of pollution and	l annlication	ns of	K3, K6		
	up technologies for th	•	аррисацы	113 01	113, 110		
Credits: 4		·			Elective-3 and 4		
Max. Marks				_	s: as per rules		
	Lectures-Tutorials-Pra	actical(in hours per wee		4-0-0		7D 4 3 3 3	
Unit		Topics	S			Total No. Lectures/	of
						Units &	
						Hours (60)	
I	Interaction of Micro					15	
		ive interaction- Mutu		_			
		ensalism, Parasitism,		-	roorganism of		
	•	plane and phyllopla	ane, myco	orrhiza (types and its		
TT	applications).	/D: 1 : 1 1) C 1	1 3	r: 1:1	1.5	
II		(Biogeochemical cycle lose, hemicellulase, ligh				15	
		nmonification, nitrifica					
	•	ous cycle- Phosphate I					
	Sulphur cycle- Micr	obes involved in sulph	ur cycle.				
III	Biodegradation and	Rioramadiation				15	
111		Bioremediation tion -microbial biorem	ediation n	wtoremed	iation and	15	
	· · ·	ypes of reaction in bior	•	•			
İ		ation-Biotic or biologic			_		
		rs, Biodegradation of					
	herbicides	,	<i>y</i>	- 7 T			
IV	Sewage/Waste Wate	r Treatment				15	
		ment: Source and type	of solid was	ste, metho	d of solid waste		
	_	g and sanitary landfill),					
		ength of sewage (BOD	-	_			
	Secondary (oxidation	on pond, trickling filte	er, activate	d sludge	process and		
	septic tank) or biol	ogical treatment, Waste	water treat	ment of s	ome industry,		
	water recycling				-		

Suggested Readings:						
Alexander M., Introduction to soil microbiology, Wiley Eastern limited, New Delhi.						
2. Alexopoulas C.J. and MIMS C.W., Introductory Mycology, New age international, New Delhi.						
3. Aneja K.R., Experiments in Microbiology, plant pathology, Tissue culture and Mushroom cultivation,						
New Age International, New Delhi						
4. Hurst, C.J., Environmental Microbiology, ASM press, Washington D.C.						
5. Mehrotra A.S., Plant Pathology, Tata Mcgraw Hill Publications limited, New Delhi.						
6. Pelczar M.J., Chan E.C.S and Kreig N.R., Microbiology, Mcgraw-Hill Book Company, New York.						
7. Prescott Lansing M., Harley John P. and Klein Donald A., Microbiology, WCB Mcgraw- Hill, New						
York.						
8. Salle A.J., Fundamental Principles of Bacteriology, Tata Mcgraw-Hill Publishing Company Limited,						
New Delhi.						
9. Stacey R.H. and Evans H.J., Biological Nitrogen Fixation, Chapman and Hall limited, London.						
10. Stanier R.Y., Ingraham J.L., General Microbiology, Prentice Hall of India Private Limited, New Delhi.						
11. Subbarao N.S., Soil Microroganisms and Plant Growth, Oxford and IBH Publishing Company, New Delhi.						
This course can be opted as an elective by the students of following subjects: Open for all The eligibility for this paper is 10+2 with any subject						
Suggested Continuous Evaluation Methods: • Seminar/ Presentation on any topic of the above syllabus • Test with multiple choice questions/ short and long answer questions Attendance						
intropie enoice questions, short and long answer questions retendance						
Course prerequisites: To study this course, a student must have had the subject ALL in class12th. The eligibility						
for this paper is 10+2 with any subject						
Further Suggestions: It widens the scope for students to join Government and Non-Government organization						
upskilling the people at different levels as per their socio-economic structure						
At the End of the whole syllabus any remarks/ suggestions:						

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

FACULTY OF SCIENCE

KHWAJA MOINUDDIN CHISTI LANGUAGE UNIVERSITY, LUCKNOW, U.P. (India)

B.Sc. - Microbiology (2nd Year, Semester-IV)

(SEC-4)/Vocational Course-4

Recombinant DNA Technology

Effective from Session 2023-2024

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Programme/Class: Certificate		Year: Second		Semester	: Fourth		
Subject: Mic		Course Title: Recon					
Course Code							
Course Outcomes: Bloom's						taxonomy	
• CO1- To understand the importance of molecular tool. K1, F					K1, K4		
• CO2- To understand, learn and gain skill of isolation, culturing and maintenance of pure culture. K2, K4							
CO3- To enable the students to get sufficient knowledge in principles and applications of cloning. K3,K6							
CO4- After completing this course, students will have working knowledge on cloning. K4, K5							
• CO5- Get employment and entrepreneurship in different applied sectors. K4, K6							
Credits: 3 SEC-4/Vocational Course				Course-4			
				assing marks: as per rules			
Total No. of Lectures-Tutorials-Practical(in hours per week): L-T-P: 3-0-0							
Unit	Topics					Total No. of Lectures/ Unit & Total Hours (45)	
I	Brief history of recombinant DNA technology, Molecular tools of genetic engineering- Restriction Endonuclease, Types of endonuclease, Recognition sequences, Cleavage patterns					7	
П	DNA ligases-Homopolymer tailing, Linkers and adaptors, Alkaline phosphatase, DNA modifying enzyme- Nucleases (Endonuclease and Exonuclease), Polymerases, Enzyme modifying the end of DNA						
III	Host cells- Prokaryotic hosts (Escherichia coli and Bacillus subtilis), Eukaryotic hosts (Mammalian cells), Vectors-Characteristics of an ideal vectors, Plasmids, Types of plasmids, Nomenclature of plasmids, pBR322, Bacteriophages, Bacteriophage λ (lambda), Cosmid, Artificial chromosome vectors						
IV	Method of Gene transfer- Transformation, Conjugation, Electroporation, Liposome-mediated gene transfer, Transduction, Direct transfer of DNA (Microinjection)					10	

Suggested Readings:

- 1. Aneja, K.R. 1993. Experiments in Microbiology, Pathology and Tissue Culture, Vishwa Prakashan, New Delhi.
- **2.** Dubey, R.C. and Maheshwari. D.K. 2012. Practical Microbiology, S.Chand & Company, Pvt. Ltd., NewDelhi.
- 3. Pandey. B.P. 2014 Modern Practical Botany, (Vol-I) S. Chand and Company Pvt. Ltd., New Delhi.
- 4. W.F. Harrigan, Laboratory methods in Microbiology, Publisher Elsevier
- 5. Lynne Mc Landsborough, Food Microbiology Laboratory, CRC Press
- 6. Brain McNeil & Harvey (2008), Practical Fermentation Technology, John Wiley & Sons Ltd.

This course can be opted as an elective by the students of following subjects: Open for all The eligibility for this paper is 10+2 with any subject

U.P. STATE GOVERNMENT UNIVERSITY, (Recognised Under Section 2(f) & 12(B) of the UGC Act, 1956 & B.Tech. Approved by (AICTE)

Suggested Continuous Evaluation Methods: • Seminar/ Presentation on any topic of the above syllabus • Test with multiple choice questions/ short and long answer questions Attendance

Course prerequisites: To study this course, a student must have had the subject \overline{ALL} in class 12th . The eligibility for this paper is 10+2 with any subject

Further Suggestions: It widens the scope for students to join Government and Non-Government organization upskilling the people at different levels as per their socio-economic structure.

At the End of the whole syllabus any remarks/ suggestions: