

[Back](#)

Advancing health monitoring with cognitive IoT, rapid machine learning, and mechanical systems

Trends and Applications in Mechanical Engineering, Composite Materials and Smart Manufacturing • Book Chapter • 2024 • DOI: 10.4018/979-8-3693-1966-6.ch019

Yeruva, Ajay Reddy^a; Jadhav, Renuka Shankar^b; Roopa R.^c; Preetha S.^c; Priya R.^d; +2 authors

^aIndependent Researcher, United States

[Show all information](#)

This document is one of the chapters of a book series. [See all chapters](#)

2 88th percentile

Citations

2.27

FWCI

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (2)

References (22)

Similar documents

Abstract

Enhancing health monitoring for diabetes patients requires routine surveillance. Integrating IoT, embedded software, data analytics, intelligent systems, and smart devices can alleviate healthcare costs. Improved communication technologies enable remote exercise therapies. An intelligent healthcare infrastructure and expanded network packages are crucial for evolving e-health applications. Integration with 5G ensures higher bandwidth and energy efficiency. Real healthcare programs need seamless integration. In this study, an intelligent infrastructure for diabetes patient tracking using machine learning, smart gadgets, sensors, mobile phones, and mechanical systems ensure comprehensive data collection. Machine learning algorithms analyze patient data for efficient monitoring and prediction. Rigorous testing confirms system effectiveness. © 2024 by IGI Global. All rights reserved.

Corresponding authors

Corresponding author

A.R. Yeruva

Affiliation

Independent Researcher, United States

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

All content on this site: Copyright © 2026 [Elsevier B.V.](#), its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

[Back](#)

Innovative micro biotechnological approaches for bioenergy production from waste

[Sustainable Management of Agro-Food Waste: Fundamental Aspects and Practical Applications](#) • Book Chapter • 2024 • DOI: 10.1016/B978-0-443-23679-2.00015-X

[Singh, Manvendra](#); [Mishra, Shambhavi](#); [Mishra, Vaishnavi](#)

Department of Biotechnology, Faculty of Engineering & Technology, Khwaja Moinuddin Chishti Language University, Uttar Pradesh, Lucknow, India

[Show all information](#)

This document is one of the chapters of a book series. [See all chapters](#)

0

Citations

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (0)

References (106)

Similar documents

Abstract

Energy is of the utmost importance to transact the world economy. Globally, there is a high demand for nonrenewable fossil fuels energy production for electricity, transportation, and manufacturing. Fossil fuels have various negative aspects such as the limited existence of fossil fuels, pollution, dangerous health effects, and threats to the natural environmental balance. The present energy scenario has encouraged the exploration of more efficient alternative sources of energy that provide an uninterrupted balanced energy supply. Biofuels are an environment-friendly alternative source for renewable bioenergy production. Economical biofuels can be produced from carbon-rich agricultural plant crop biowaste. Biofuels occur in the three states: solid wood charcoal, liquid in bioethanol, biodiesel and biogas in gas form. Generally, bioethanol and biodiesel are used as biofuels. Biodiesel is produced by esterifying triglycerides with methanol from plants and animal sources. Fermentative microorganisms obtain biofuels namely bioethanol biogas and biohydrogen by a biochemical procedure. Microbial strains have a significant role in fermentation and sustainable bioenergy production. This has motivated researchers to apply biotechnological approaches to produce high-volume biofuels through an economically viable potential microbial system. This chapter describes advances in microbial biotechnology

Author keywords

Biodiesel; bioethanol; biofuels; microbial biotechnology; renewable energy; sustainable bioenergy production

© Copyright 2024 Elsevier B.V., All rights reserved.

Abstract

Author keywords

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

All content on this site: Copyright © 2026 [Elsevier B.V.](#) ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

[Back](#)

Optimizing Routing Paths in Mobile Wireless Sensor Networks: A Sub-Flow Adaptive Multipath Approach for Energy Efficiency and Delay Sensitivity

8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2024 - Proceedings • Conference Paper • 2024 • DOI: 10.1109/I-SMAC61858.2024.10714788

Raja, R. Vinston^a ; Siddiqui, Shavej Ali^b ; Avilasha B.G.^c ; Kannan, L. Mohana^d

^a Srm Institute of Science and Technology, Faculty of Engineering and Technology, School of Computing, Department of Computational Intelligence, Chennai, Tamil Nadu, Kattankulathur, India

[Show all information](#)

0

Citations

[Full text](#) [Export](#) [Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(0\)](#)

[References \(14\)](#)

[Similar documents](#)

Abstract

Wireless Sensor Networks (WSNs) have become crucial in various domains such as social applications, healthcare, and the military. However, their diversity makes them susceptible to a wide range of attacks, leading to challenges like poor throughput, high network latency, and excessive energy consumption. This study proposes a novel approach that combines residual Riemannian neural networks with the Sub-Flow Adaptive Multipath Routing algorithm for enhanced routing and attack detection in WSNs. By leveraging node position data, the Sub-Flow Adaptive Multipath Routing algorithm optimizes energy consumption and extends network lifespan. Simultaneously, residual Riemannian neural networks analyze residual patterns in network traffic data to accurately detect rogue nodes, thereby enhancing security. Blockchain technology is then employed to securely store classified data, ensuring data integrity and security. This integrated approach significantly improves network performance, maintains robust security against potential threats, and enhances the reliability of WSNs in demanding environments. © 2024 IEEE.

Author keywords

blockchain; residual Riemannian neural network; Sub Flow Adaptive Multipath Routing algorithm; Wireless sensor networks

Indexed keywords

Engineering controlled terms

Delay tolerant networks; Intelligent systems; Network security; Routing algorithms; Wireless sensor networks

Engineering uncontrolled terms

Adaptive multipath routing; Block-chain; Energy-consumption; Multipath routing algorithms; Neural-networks; Residual riemannian neural network; Routing path; Sensors network; Sub flow adaptive multipath routing algorithm; Wireless sensor

Engineering main heading

Energy utilization

Corresponding authors

Corresponding author

R.V. Raja

Affiliation Srm Institute of Science and Technology, Faculty of Engineering and Technology, School of Computing, Department of Computational Intelligence, Chennai, Tamil Nadu, Kattankulathur, India

Email address vinstonr@srmist.edu.in

© Copyright 2024 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

 RELX™

[Back](#)

Sustainable Water Management and Treatment: Systems, Processes and Technologies

[Environmental Science and Engineering](#) • Book Chapter • 2025 • DOI: 10.1007/978-3-031-85327-2_7

[Mishra, Bharat](#)^a ; [Tiwari, Archita](#)^b

^aShakuntala Misra National Rehabilitation University, Lucknow, India

[Show all information](#)

This document is one of the chapters of a book series. [See all chapters](#)

0

Citations

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (0)

References (134)

Similar documents

Abstract

Global water resources are rapidly diminishing, driven by population growth, climate change, and expanding industrialization. Experts estimate that by 2050, 52% of the projected 9.7 billion people worldwide will reside in areas experiencing water stress or scarcity. The global challenge of accessing clean, potable water will persist as sustainable solutions remain elusive. Water sustainability involves meeting the current generation's water needs without jeopardizing future generations' ability to meet their own. Water is the cornerstone of sustainable development, serving as a common thread linking global challenges such as energy, food security, food security, health, peace, security, and poverty eradication. Our survival and well-being depend heavily on effective water resource systems. However, with growing development pressures on land in watersheds and increasing demands for water in streams, rivers, lakes, and aquifers, it is unrealistic to expect these water systems to return to or maintain their pristine, most productive states. Sustainable water management is crucial for addressing these pressures and achieving sustainable development goals. Sustainable Development Goals (SDGs). SWM ensures that current water needs are met for all users without compromising the ability of future generations to meet their own needs. This concept aligns with broader sustainability principles, addressing both present and future water challenges. Enhancing the efficiency of conventional membrane technologies for water treatment is now crucial to minimizing their environmental impact.

Wastewater treatment removes pollutants, coarse particles, and toxic substances while killing pathogens and producing bio-methane. Methane (CH_4) and manure for agriculture. It is crucial in reducing water waste, easing pressure on natural water sources, and supporting clean energy, forming the foundation for sustainable waste management. Membrane technologies are increasingly favored for wastewater treatment due to their sustainability advantages, including cost-effectiveness, operational ease, and safety. Sustainable water treatment technologies utilize innovative methods such as membrane filtration, advanced oxidation processes (AOPs), and nanotechnology. Techniques like reverse osmosis, reverse osmosis and ultrafiltration are highly effective in removing contaminants. Contaminants, microorganisms, and nanoparticles from water. Sustainable water technologies include wastewater treatment plants, intelligent irrigation systems, fog catchers, rainwater harvesting, tap aerators, seawater desalination, portable filters, and solar-powered desalination units. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Author keywords

Electro deionization; Membrane technology; Water management; Water pollution; Water scarcity; Water Stress Index; Waterborne diseases

Indexed keywords

Engineering controlled terms

Agriculture; Cost effectiveness; Environmental technology; Microfiltration; Population statistics; Potable water; River pollution; Sustainable development; Sustainable development goals; Wastewater treatment; Water conservation; Water filtration; Waterworks

Engineering uncontrolled terms

Electro-deionization; Future generations; Global challenges; Sustainable water; Sustainable water management; Water needs; Water scarcity; Water stress indices; Water-borne disease; Waters managements

Engineering main heading

Membrane technology

Corresponding authors

Corresponding author

B. Mishra

Affiliation

Shakuntala Misra National Rehabilitation University, Lucknow, India

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

[Author keywords](#)

[Indexed keywords](#)

[Corresponding authors](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 [Elsevier B.V.](#), its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

