

[Back](#)

Sustainable Water Management and Treatment: Systems, Processes and Technologies

[Environmental Science and Engineering](#) • Book Chapter • 2025 • DOI: 10.1007/978-3-031-85327-2_7

[Mishra, Bharat](#)^a ; [Tiwari, Archita](#)^b

^aShakuntala Misra National Rehabilitation University, Lucknow, India

[Show all information](#)

This document is one of the chapters of a book series. [See all chapters](#)

0

Citations

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (0)

References (134)

Similar documents

Abstract

Global water resources are rapidly diminishing, driven by population growth, climate change, and expanding industrialization. Experts estimate that by 2050, 52% of the projected 9.7 billion people worldwide will reside in areas experiencing water stress or scarcity. The global challenge of accessing clean, potable water will persist as sustainable solutions remain elusive. Water sustainability involves meeting the current generation's water needs without jeopardizing future generations' ability to meet their own. Water is the cornerstone of sustainable development, serving as a common thread linking global challenges such as energy, food security, food security, health, peace, security, and poverty eradication. Our survival and well-being depend heavily on effective water resource systems. However, with growing development pressures on land in watersheds and increasing demands for water in streams, rivers, lakes, and aquifers, it is unrealistic to expect these water systems to return to or maintain their pristine, most productive states. Sustainable water management is crucial for addressing these pressures and achieving sustainable development goals. Sustainable Development Goals (SDGs). SWM ensures that current water needs are met for all users without compromising the ability of future generations to meet their own needs. This concept aligns with broader sustainability principles, addressing both present and future water challenges. Enhancing the efficiency of conventional membrane technologies for water treatment is now crucial to minimizing their environmental impact.

Wastewater treatment removes pollutants, coarse particles, and toxic substances while killing pathogens and producing bio-methane (CH₄) and manure for agriculture. It is crucial in reducing water waste, easing pressure on natural water sources, and supporting clean energy, forming the foundation for sustainable waste management. Membrane technologies are increasingly favored for wastewater treatment due to their sustainability advantages, including cost-effectiveness, operational ease, and safety. Sustainable water treatment technologies utilize innovative methods such as membrane filtration, advanced oxidation processes (AOPs), and nanotechnology. Techniques like reverse osmosis, reverse osmosis and ultrafiltration are highly effective in removing contaminants. Sustainable water technologies include wastewater treatment plants, intelligent irrigation systems, fog catchers, rainwater harvesting, tap aerators, seawater desalination, portable filters, and solar-powered desalination units. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Author keywords

Electro deionization; Membrane technology; Water management; Water pollution; Water scarcity; Water Stress Index; Waterborne diseases

Indexed keywords

Engineering controlled terms

Agriculture; Cost effectiveness; Environmental technology; Microfiltration; Population statistics; Potable water; River pollution; Sustainable development; Sustainable development goals; Wastewater treatment; Water conservation; Water filtration; Waterworks

Engineering uncontrolled terms

Electro-deionization; Future generations; Global challenges; Sustainable water; Sustainable water management; Water needs; Water scarcity; Water stress indices; Water-borne disease; Waters managements

Engineering main heading

Membrane technology

Corresponding authors

Corresponding author

B. Mishra

Affiliation

Shakuntala Misra National Rehabilitation University, Lucknow, India

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

[Author keywords](#)

[Indexed keywords](#)

[Corresponding authors](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 [Elsevier B.V.](#), its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

[Back](#)

Circular economy and agriculture: mapping scientific productivity, research pattern and future research direction

[Environment, Development and Sustainability](#) • Review • 2024 • DOI: 10.1007/s10668-023-03963-x

[Ali, Jaber](#)^a ; [Ali, Tabassum](#)^b

^a Economics & Business Environment Area, Indian Institute of Management Jammu, Jammu and Kashmir, Jammu, 181 221, India

[Show all information](#)

10 69th percentile

Citations

0.94

FWCI

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (10)

References (135)

Similar documents

Abstract

This study aims at assessing the global research productivity and discovery of knowledge clusters on circular economy and agriculture using bibliometric analysis. A total of 757 articles have been retrieved from the Scopus database covering the period from 2008 to 2022 on the theme of circular economy and agriculture. The analysis reveals interesting theoretical and practical implications of scientific publications on circular economy and agriculture. The idea of a circular economy in agriculture started gaining importance after 2015 and gradually received significant focus from the scientific community with exponential growth in research publications and citations. Out of the top 10 leading publishing countries on circular economy and agriculture, 6 countries belong to the European Union. The keyword analysis identified four key research areas of CE and agriculture. Highly relevant and less developed research themes such as agricultural sustainability, waste management & recycling, anaerobic digestion and food security have been identified as future research focus areas. The thematic research evolution indicates the merging of multiple themes over time and the emergence of circular agriculture as a core model. A comprehensive knowledge synthesis about circular agricultural practices may help in the

Author keywords

Agriculture; Bibliometric analysis; Circular economy; Recycling; Sustainability; Waste

Indexed keywords

GEOBASE Subject Index

anaerobic digestion; emergence; food security; growth rate; recycling; sustainability; waste management

Corresponding authors

Corresponding author J. Ali

Affiliation Economics & Business Environment Area, Indian Institute of Management Jammu, Jammu and Kashmir, Jammu, 181 221, India

Email address jabirali@live.in

© Copyright 2024 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

 RELX™

[Back](#)

Potential of confocal micro-Raman spectroscopy for the nutrient profiling of kidney beans

National Academy Science Letters • Article • 2023 • DOI: 10.1007/s40009-022-01199-3

Awasthi, Aishwary^a; Tripathi, Aradhana^a; Baran, Chhavi^b; Sharma, Shristi^a; Sharma, Sweta^{a,c}; +1 author

^a Department of Physics, Saha's Spectroscopy Laboratory, University of Allahabad, Prayagraj, India

[Show all information](#)

2 38th percentile

Citations

0.25

FWCI

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (2)

References (11)

Similar documents

Abstract

Vibrational spectroscopic techniques like confocal Raman micro-spectroscopy have immense potential in the field of nutrition science for the rapid and non-destructive analysis of feed involving minimal sample preparation steps. The study describes the applicability of confocal micro-Raman spectroscopy for the profiling of multiple nutrient components of kidney beans non-destructively, simultaneously, rapidly without sample pre-processing. The analysis of acquired Raman spectrum of the kidney beans shows the fingerprints of carbohydrates, cell wall polysaccharides and proteins. The spectral features and nutrients profile obtained are advantageous for nutritionists and scientists for tackling malnutrition and maintaining healthy nutrient-rich diet. © 2022, The Author(s), under exclusive licence to The National Academy of Sciences, India.

Author keywords

Confocal micro-Raman spectroscopy; Kidney beans; Non-destructive techniques; Nutrient profiling

Corresponding authors

Corresponding
author

K.N. Uttam

Affiliation

Department of Physics, Saha's Spectroscopy Laboratory, University of Allahabad,
Prayagraj, India

Email address

kailash.uttam@rediffmail.com

© Copyright 2023 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

[Back](#)

Non-Destructive Assessment of the Nutrient Profile of Underutilized Seeds Using Spectroscopic Probes

[Analytical Letters](#) • Article • 2023 • DOI: 10.1080/00032719.2022.2099414

[Sharma, Shristi](#)^a; [Sharma, Sweta](#)^{a, b}; [Bharti, Abhi Sarika](#)^a; [Tiwari M.K.](#)^c; [Uttam K.N.](#)^a

^a Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India

[Show all information](#)

5 48th percentile

Citations

0.43

FWCI

[Full text](#) [Export](#) [Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(5\)](#)

[References \(56\)](#)

[Similar documents](#)

Abstract

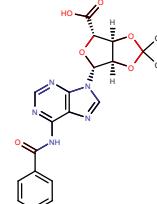
The population of the world is increasing rapidly, and it is challenging to fulfill the nutritional requirements of an overpopulated world. Therefore, it is necessary to identify underutilized food alternatives that are nutritious, have health-promoting properties, and are widely available. Seeds of mango, drumstick, and jamun are reported to have immense health promoting constituents. Despite this, they are largely discarded as waste due to lack of knowledge about their nutrient profile. Therefore, the present study aims at demonstrating the potential of nondestructive, rapid, and label free spectroscopic probes: attenuated total reflectance Fourier transform infrared spectroscopy, confocal micro Raman spectroscopy, and synchrotron radiation based X-ray fluorescence for determining the phytochemical and elemental profile of the mango, drumstick, and jamun seeds. The infrared and Raman spectra show that these seeds are rich sources of cell wall polysaccharides, amino acids, carbohydrates including glucose and starch, fatty acids, and antioxidants such as carotenoids and flavonoids. In addition, the X-ray fluorescence spectra show that these seeds are rich sources of calcium, potassium, magnesium, iron, copper, zinc, and manganese. The study highlights the potential of the nondestructive spectroscopic probes for the rapid, sensitive, cost effective and accurate assessment of nutrient profile of the seeds. The spectral information is highly beneficial for the administrators and nutrition scientists for assessment of diet quality, tackling malnutrition in an effective manner, and exploring use of these seeds. © 2022 Taylor & Francis Group, LLC.

Author keywords

Attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy; confocal microRaman spectroscopy; nutrient profiling; seeds; synchrotron radiation based x-ray fluorescence (XRF)

Reaxys is designed to support chemistry researchers at every stage with the ability to investigate chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.

Substances


[View all substances \(5\)](#)

Mn

[View details](#)

Mg

[View details](#)

[View details](#)

K

[View details](#)

Powered by **Reaxys**®

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
CRS-UGC-DAE		

Funding text

The authors are grateful to RRCAT, Indore for providing SR- μ XRF facility (BL-16), Indus-2 to carry out measurements and Dr. A. K. Singh and Mr. Ajay Khoha for his kind cooperation in data acquisition. Dr. K. N. Uttam is also thankful to CRS-UGC-DAE, Indore for the award of project.

Corresponding authors

Corresponding author	K.N. Uttam
Affiliation	Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
Email address	kailash.uttam@rediffmail.com

© Copyright 2023 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Reaxys Chemistry database information

Funding details

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

[Back](#)

Non-Destructive Monitoring of Ripening Process of the Underutilized Fruit Kadam Using Laser-Induced Fluorescence and Confocal Micro Raman Spectroscopy

[Analytical Letters](#) • Article • 2023 • DOI: 10.1080/00032719.2022.2137523

[Baran, Chhavi](#)^a; [Sharma, Sweta](#)^{b, c}; [Tripathi, Aradhana](#)^b; [Awasthi, Aishwary](#)^b; [Jaiswal, Aarti](#)^d; [+3 authors](#)

^aCentre for Environmental Science, IIDS, University of Allahabad, Allahabad, India

[Show all information](#)

11 76th percentile

Citations

1.20

FWCI

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (11)

References (38)

Similar documents

Abstract

Underutilized fruits like kadam are bio-reserves of numerous biochemical and minerals and have the potential to be used as food alternatives and supplements to fulfill the needs of malnourished populations. The production of quality fruits needs monitoring throughout the growth and ripening in order to build consumer and industry confidence. The nondestructive optical spectroscopic techniques have immense potential to monitor the growth and ripening indices of the fruits. Hence, this study explores the potential of laser-induced fluorescence and confocal micro Raman spectroscopy for the reliable and cost effective monitoring of growth and ripening of kadam fruits. The analysis of the laser-induced fluorescence measurements reveals that the ripening of the kadam fruits may be monitored by analyzing the fluorescence emission of chlorophyll and carotenoids. The decrease in the intensity of chlorophyll fluorescence accompanied by the increase in the intensity of the carotenoid bands is the characteristic fluorescence signature associated with the ripening of the kadam fruits. Hence, upon the ripening of the fruits, the concentration of chlorophyll decreases considerably with the accumulation of carotenoids. This fact is further complimented by confocal micro Raman measurements, which show that as the fruit ripens, the intensity of carotenoid bands increases dramatically.

The observed spectral features may be used by the horticulture scientists and nutritionists to monitor the growth, maturity, and ripening of underutilized fruits like kadam in order to maximize the quality and minimize postharvest losses. © 2022 Taylor & Francis Group, LLC.

Author keywords

Confocal micro Raman spectroscopy; kadam; laser-induced fluorescence spectroscopy; ripening process; underutilized fruit

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
University Grants Commission See opportunities by UGC ↗		UGC

Funding text

The authors are thankful to UGC, New Delhi for providing financial assistance to create the confocal micro Raman facility under the UGC–CAS program to the Department of Physics, University of Allahabad, Allahabad. Chhavi Baran, Aradhana Tripathi, Aarti Jaiswal, and Aishwary Awasthi are also thankful to UGC, New Delhi for the financial assistance in the form of fellowships.

Corresponding authors

Corresponding author	K.N. Uttam
----------------------	------------

Affiliation	Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, 211002, India
-------------	--

Email address	kailash.uttam@rediffmail.com
---------------	------------------------------

Abstract

[Author keywords](#)

[Funding details](#)

[Corresponding authors](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.